自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Together_CZ的博客

种一棵树,最好的时间是十年前,其次是现在

原创 零基础起步Keras+LSTM+CRF的实践命名实体识别NER

文本分词、词性标注和命名实体识别都是自然语言处理领域里面很基础的任务,他们的精度决定了下游任务的精度,其实在这之前我并没有真正意义上接触过命名实体识别这项工作,虽然说读研期间断断续续也参与了这样的项目,但是毕业之后始终觉得一知半解的感觉,最近想重新捡起来,以实践为学习的主要手段来比较系统地对命名实...

2020-07-18 12:06:01 1298 0

原创 Python开发过程中错误解决记录【持续更新记录,欢迎交流】

2020.07.10 错误:Object arrays cannot be loaded when allow_pickle=False 出现在numpy加载本地.npy文件的时候 解决:np.load('a.npy', allow_pickle=True)

2020-07-10 15:08:25 415 0

原创 基于pycrfsuite和sklearn_crfsuite的命名实体识别NER实战【以CoNLL2002数据集为基准】
原力计划

文本分词、词性标注和命名实体识别都是自然语言处理领域里面很基础的任务,他们的精度决定了下游任务的精度,其实在这之前我并没有真正意义上接触过命名实体识别这项工作,虽然说读研期间断断续续也参与了这样的项目,但是毕业之后始终觉得一知半解的感觉,最近想重新捡起来,以实践为学习的主要手段来比较系统地对命名实...

2020-07-09 10:41:47 516 0

原创 零基础实战Keras模型转化为RKNN格式模型成功运行在RK3399Pro板子上

深度学习实验大多是在服务器端进行的,在实际的应用中,想要把训练好的模型投入实际的应用中去的时候往往需要转化为适应于边缘端或者是移动端计算的格式,一是缩减模型大小降低原有的参数体量,二是借助于硬件环境的加速能力,提升模型的推理速度,总之就是为了能够在板子上跑的更快点。 在实际的开发实践中,我们...

2020-07-02 15:45:11 898 0

原创 基于开源文本摘要模块sumy的文本摘要生成实践

自然语言处理领域中有很多的子任务,大类上一共分为四个板块,如下: 1. 序列标注:分词/POS Tag/NER/语义标注 2. 分类任务:文本分类/情感计算 3. 句子关系判断:Entailment/QA/自然语言推理 4. 生成式任务:机器翻译/文本摘要 在我接触NLP相关的工作以来...

2020-07-28 09:31:52 358 0

原创 序列标注模型结果评估模块seqeval学习使用

诸如词性标注、命名实体识别等NLP任务都是属于序列标注类型的任务的,本质属于分类任务,对于序列标注类型的模型的结果评估也有对应的模块实现,这里主要是简单进行使用说明。 模块名叫 seqeval,GitHub地址在这里。 seqeval模块支持的标注格式如下所示: IOB1 IO...

2020-07-13 13:57:45 383 0

原创 Python数据相关性分析实践记录

数据分析是很多建模挖掘类任务的基础,也是非常重要的一项工作,在我之前的系列博文里面已经详细介绍过很多数据分析相关的内容和实践工作了,与之对应的最为常见的分析手段就是热力图可视化分析了,这里我简单给出来自己之前的几篇相关的文章,感兴趣的话可以前去查阅。 《Py...

2020-07-08 14:41:09 425 0

原创 基于百度开源项目LAC实现文本分词、词性标注和命名实体识别
原力计划

文本分词、词性标注和命名实体识别都是自然语言处理领域里面很基础的任务,他们的精度决定了下游任务的精度,今天在查资料的时候无意间发现了一个很好玩的开源项目,具体查了一下才知道这是百度开源的一个主要用于词性标注和命名实体识别的项目,决定拿来尝试一下。 首先是项目环境的配置安装,当前已经支持一键...

2020-07-07 09:09:34 474 0

原创 Python电影票房数据可视化分析基础实践

数据可视化一直是很多数据分析或者是建模挖掘任务里面经常会用到的一项功能,今天我们基于某电影网站中公开发布的电影票房数据进行一些基础的数据可视化分析实践,下面是部分的数据样例: 叶问.,20160304,33151,2193,196.9万,33.96%,46 捉妖记,20150718,17860...

2020-07-02 13:43:44 391 0

提示
确定要删除当前文章?
取消 删除