自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Together_CZ的博客

种一棵树,最好的时间是十年前,其次是现在

  • 博客(23)
  • 资源 (65)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 GitHub网站项目下载速度过慢、下载失败问题成功解决

GitHub对于广大开发者来说肯定是必备的网站,经常的浏览GitHub网站中的项目, 学习优秀项目的设计逻辑和实现思路对于提升自己的基础实力是有很大的帮助的,但是无奈当我们需要从GitHub中下载指定的项目到本地学习的时候,经常会遇上网速很慢很慢几乎为0的情况,小到几MB达到几十MB、几百MB的项目下载失败是常用的事情,真的也是很头疼的事情了。 我们不禁会问:为什么这...

2019-07-31 18:04:56 8831

原创 neo4j图数据库安装实践与报错解决

在图数据库领域中neo4j应该是使用的非常广泛的一种了,之前研究生期间就安装过这个数据库,后来换了电脑也就没有在尝试使用了,今天想在台式机上重新安装一下。 数据库下载地址在这里 打开后下载我红色线框圈出来的版本即可: 也就是社区版【免费】的windows版本就行了。 下载好了以后直接解压缩即可,如下: 进...

2019-07-31 15:09:11 1382

原创 《哪吒之魔童降世》、《西游记之大圣归来》影评数据反响如何?——Python数据爬取与词云可视化分析

最近每天都会被《哪吒之魔童降世》的票房、评论刷屏,这不今天刚刚新闻报道说是票房已经突破7亿了.....,对于当前国产动漫来说,惊不惊喜意不意外呢?可惜我还没有时间前去看看这部暑期大片呢,这周五有时间的话一定要去看看啦。 闲话就说到这里了,既然最近《哪吒之魔童降世》这么火爆,我也想抢先看看广大影迷朋友们对待这个电影是如何评价的,想到这里首先就是要对《哪吒之魔童降世》电影的影...

2019-07-29 14:58:15 9991

原创 Python实现多变量序列堆叠式LSTM模型,并实现未来多时刻预测

在时间序列相关的很多建模工作中,LSTM模型是经常会使用到的,从提出到现在LSTM模型已经有了很多的扩展、变种和应用,今天我们简单地实现基于LSTM模型来对多个变量的数据进行建模预测,在简单地预测中只能做单步预测,这里实现了多步的预测分析。 具体实现如下:#!usr/bin/env python#encoding:utf-8from __future__ i...

2019-07-27 16:02:52 2339 17

原创 python实现创建数据表并写入数据

今天主要是总结一下最近使用较多的MySQL数据库的读写操作,将公共部分抽象出来做成单独的模块,比如我提供了一个数据库写操作的函数,只要明确了数据输入的格式,可以从csv文件、json文件、txt文件、Excel文件进行原始数据文件的读取然后调用写操作函数完成数据的写入操作,能够简化重复的工作。 具体的Demo实现如下:#!usr/bin/env python#enco...

2019-07-26 23:23:51 1189

原创 Python基于ImageAI实现完整的流程:数据集构建、模型训练、识别预测

在前几天的博客里面,我介绍了ImageAI模块,以及基于官方预训练得到的模型进行了简单的识别分析,整体的流程都是比较简单的,今天想要基于ImageAI模块来完整地实现整个图片分类识别的流程,也就是说:这里的数据集构建和模型的训练以及结果模型的调用预测都是自己完成的。ImageAI简化了模型的搭建流程,所以整体来说还是比较简单的。 按照官方的讲解我们先来构建自己本地的数据集...

2019-07-25 11:57:04 1964 20

原创 python基于百度地图获取指定的经纬度信息

在实际做项目的时候经常会遇上需要使用到某个位置经纬度的情况,这个位置的经纬度经常又是没有的,那么就需要基于公开的数据去获取了,这里基于百度地图提供的API来完成指定位置经纬度数据的获取,实现很简单,主要是提供一个便捷的小工具方便使用,具体实现如下:#!usr/bin/env python#encoding:utf-8'''__Author__:沂水寒城功能: pyth...

2019-07-25 10:50:25 600

原创 python生成指定年份所有的天,并计算每天属于一年的第几周和周几

今天有一个功能点是需要按照日历上面的日期来进行一些数据的计算工作,在计算之前我需要将每一天属于一年52周里面的第几周和周几计算出来,在计算之前我还需要有一年内的所有天的日期,整体的思路是十分清晰的,实现流程也没有特别复杂的地方,主要就是要细致一点,好了,不多说了,具体实现如下:#!usr/bin/env python# encoding:utf-8from __future...

2019-07-23 20:07:21 692

原创 python基于scipy拟合构建所需统计分析模型,可视化分析展示

最近的工作中有一个需求就是,给我一批历史的数据,需要我基于统计分布模型来去拟合一下原始的数据,挖掘出来数据最有可能的统计分布是怎么样的,为后面的参数区间计算或者是概率值计算提供一个指导。 下面是我手中数据的概率分布情况: 从上面的概率分布函数曲线来看并不是一个正态分布的模型,所以我们就需要来去找别的统计模型来进行拟合分析了,标准模型比如:正态分布模型、...

2019-07-22 19:55:19 1432

原创 Python基于 ImageAI 模块实践 idenprof数据集识别预测分析

图像识别早已不是很新鲜的话题了,很多数据处理的任务到最后都会归为图像识别中,在之前的很多工作中,我陆陆续续也接触了很多相关的工作,从最开始数据处理,到模型搭建与最终上线也都经历,大多数时候模型都是自己搭建的,虽然说现在keras的出现极大地简化了模型的搭建工作,但是整个过程还是需要自己去实践完成的,对于很多的初学者来说并不是很容易的。 今天发现了一个好玩的库——Imag...

2019-07-21 13:41:31 2807 10

原创 pyspark报错问题 Exception in thread "main" java.lang.UnsupportedClassVersionError 成功解决

pyspark是基于Python去学习实践spark框架很好的方式之一,之前我已经按照网上的一些教程完整地搭建了Hadoop和Spark的环境,之后安装了pyspark,安装方式很简单直接使用下述命令即可:pip install pyspark 一系列的安装结束之后就安装好了pyspark以及相关的依赖模块了。 在我之前的博客里面也有相关的机器...

2019-07-20 13:24:38 802

原创 python读取 .sqlite 数据库文件

继上一篇文章《python实现【国家统计局】三级区划代码和城乡划分代码爬取》我们爬取了国家统计局中公布出来的行政区划编码数据,今天我们发现了民政局也公布了类似的数据,但是这个不需要爬取,可以直接下载网站提供的压缩包就好了,压缩包解压缩后我们得到的是 .sqlite 形式的数据库文件,想要查看数据内容就需要对该类型的数据库文件进行解析处理。 具体的数据读取实现如下:#!...

2019-07-19 23:58:13 2685

原创 神经网络中常用激活函数总结【Python实现激活函数与导函数,曲线可视化分析】

神经网络中激活函数发挥着非常重要的作用,在处理简单的线性可分的数据集的时候我们不需要用到激活函数仅仅依靠线性分类器就可以解决问题,但是实际生活中的绝大多数的场景并不是这样简单的,那么简单的线性分类器就没有办法起到很好的效果了,此时常用的处理手段有两种:1、借助于转化策略将低维空间线性不可分的数据映射到高维空间中,使得其变得线性可分,此时依旧可以基于线性分类器完成建模处理,例如:S...

2019-07-18 14:02:47 1194

原创 Linux 命令之——文件行数查询命令温习

昨晚的问题中还有一个方面就是问到了Linux命令相关的内容,我自己很多开发工作也都是基于Linux环境进行的,所以对于这一块还是比较有自信的,结果问了一个问题就是“给你一个文件,给我统计一下这个文件的行数”,我一时想不起来了,后来结束了之后我突然想到了自己之前统计过指定文件夹内文件的数量,命令如下:ls -l | wc -l 结果如下: 可是...

2019-07-17 09:35:43 491

原创 sigmoid函数温习【函数曲线可视化与导函数曲线可视化】

今天晚上遇到一个问题就是sigmoid函数,我只记得sigmoid函数的原始函数曲线是什么样子的,但是导函数是什么样子我还真的是不记得了,恰巧就被问到了这个问题,还顺便问了一下导函数的取值范围是多少,如果当时有纸和笔的话我倒是可是现场算一算的,但是当时是在阳台上没有办法去算,尴尬...... 结束了这一次的尴尬之后,回到工位上抓紧温习一下,先绘制一下sig...

2019-07-16 21:01:33 1097

原创 Uber开源深度学习工具Ludwig学习实践

随着人工智能热潮的增强,越来越多的AI应用或者是工具走进人们的事业,Uber也不例外,其开源了自己研发的基于Google深度学习框架Tensorflow的深度学习工具Ludwig,号称甚至可以不写一行代码就完成深度学习完整的工作,看到这里不仅就要前来尝试一番了。 官方的GitHub仓库在这里。 官方网站在这里。 官方提供的exam...

2019-07-16 14:13:25 889 2

原创 python实现【国家统计局】三级区划代码和城乡划分代码爬取

今天找了点时间做了一个小爬虫,主要目标网站就是国家统计局,里面有历年来的区划代码和城乡划分代码数据,这在一些项目中都是会使用到的,爬虫本身的实现没有太复杂的内容,我们今天采集的是最新的也就是2018年的三级划分编码数据,目标网站的截图如下所示: 以北京市为例,点击进入二级编码数据页面如下: 三级编码数据如下: 当然,再次点击...

2019-07-15 23:41:35 1252

原创 python实现基于分钟数据来计算小时风速、风向的数据

今天处理了一个气象数据集,我们得到的数据集是分钟数据形式,需要转化为小时数据形式,我们都知道小时的风速风向其实并不是二者分钟数据的均值,因为不可能一小时内所有的风向都是同一方位上的,只能说某一方位上一小时内的频度最高,也即该方位为该小时内的主风向,至于风速的计算,则是取一小时内该主风向方位上的所有分钟风速数据的均值。 有了上面的计算思路之后就可以直接进行实现了,具体实现如...

2019-07-14 22:51:06 2076

原创 python实现基于 Adaboost 框架来构建自定义集成模型【自定义基分类器模型】

sklearn提供了Adaboost等几种常见的集成框架很成熟的实现,在以往的大多数使用场景中,我大都会直接使用默认的基分类器模型,不会对其进行调整设置,其他的几个主要的参数比如:基分类器数量等可能会基于网格调参的形式进行最优化参数的搜索, 下面是sklearn官网里面对adaboost模型的参数定义:class sklearn.ensemble.AdaBoostClassifie...

2019-07-13 22:28:48 802 2

原创 python实现xml数据解析处理

今天leader给我了一个excel数据,要我对它进行解析处理,我按照Excel数据格式对其进行解析处理,发现一直报错,提醒我数据文件不是excel数据格式,原始数据部分截图如下:time Temperate Pressure Humidity WindSpeed WindDirection 2023-06-26 17:30:00 27.12...

2019-07-12 18:35:25 680

原创 百度开源深度学习框架【飞桨——PaddlePaddle】学习实践一

上一周百度刚刚召开了AI开发者大会,其中自研的深度学习平台飞桨再一次走进了大家的视野里面,其中,早在学校期间我就有接触过PaddlePaddle,据说这个名字都是机器学习界的大神吴恩达给起的,也就是下面这位: 这里说之前接触过是什么意思呢,主要是之前接触的时候并不是很顺利,在安装和搭建的时候都有问题,后面的实践也就不了了之了,今天重新来安装使用了PaddlePadd...

2019-07-11 19:20:24 5804 4

原创 Python实现蒙特卡罗方法仿真模拟求解圆周率Pi值

最近遇上了需要仿真模拟采样相关的工作,之前接触过比较牛的方法之一就是蒙特卡罗方法,对于这个随机采样方法的了解过,但是详细的概念什么的早已记不住了,这里给出来百度百科的定义:蒙特·卡罗方法简介蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值...

2019-07-10 17:26:46 2320

原创 Python实现正态分布指定区间内【置信区间】概率值计算

学过概率论的相信对于正态分布都不会陌生,这个可以说是非常经典非常重要的一种概率分布了,在现实生活中也是广泛在使用的,比如说:男女的升高服从正态分布,灯泡的寿命服从正态分布,某地区的降雨量服从正态分布,诸如此类的实例还有很多,可以说我们生活中的很多场景都符合或者近似符合于正态分布。 记得上学的时候,求解指定区间内的概率如下: 往往都是转化为标准正态分布,之后借...

2019-07-03 19:27:20 4051 2

MSTAR数据集.zip

原始的【MSTAR数据集】是灰度图,这里经过转化处理后的【MSTAR数据集】,已经是3通道数据集了,后面可以直接用于模型的测试分析使用。

2020-05-29

Ubuntu下gcc-7.5.0安装完整依赖.zip

升级本地gcc版本所需安装包详情如下: gcc-7.5.0.tar.gz gmp-6.1.0.tar.bz2 mpc-1.0.3.tar.gz mpfr-3.1.4.tar.bz2 isl-0.16.1.tar.bz2

2020-05-22

windows下MongoDB最新的安装包

在官网中的链接中,MongoDB很难下载下来,还得输入邮箱什么的,这里是今天20180829尝试了很多次以后成功下载下来的windows下最新的安装包,分享出来给需要的人

2018-08-29

jsonfile查看工具

本软件是功能强大,实用便捷的json文件查看工具,可以方便地查看json数据内容

2018-08-14

xgboost-whl安装包(包含32位和64位)

xgboost-whl安装包是可以很方便的在windows7和windows10下安装修改版xgboost的包文件

2018-09-07

Yolov3随机手写数字数据集

Yolov3随机手写数字数据集 包含4000张可以直接使用的数据集 以及制作好的原始待检测视频+自己训练好的模型的检测视频

2020-10-15

算法设计与分析基础高清第三版

算法设计与分析基础高清第三版是在之前版本的基础上进一步提炼和编写的算法书籍,对于算法和数据结构的理解更为深入,相信对于算法的学习会有更多的帮助

2018-09-03

hadoop-mysql-hbase环境部署套装.zip

hadoop-mysql-hbase环境部署套装包括: hadoop-2.7.1.tar.gz hbase-1.1.5-bin.tar.gz jdk-8u162-linux-x64.tar.gz mysql-connector-java-5.1.40.tar.gz mysql-server_5.7.21-1ubuntu14.04_amd64.deb-bundle.tar

2020-09-08

相关性分析项目.zip

Python数据相关性分析实践完整项目【数据+代码+结果图片】 包含完整的数据和分析代码以及可视化代码,可以直接使用的完整项目数据

2020-07-08

猫狗大战迁移学习项目.zip

猫狗大战迁移学习实战项目所需的完整模型+测试数据,可以自己直接加载进行测试使用 results:自己基于迁移学习方法训练得到的二分类模型 test:bing搜索引擎图像数据爬虫结果,针对cat和dog两类目标分别爬取了200多张图像数据 test1:随机从kaggle数据集每类的12500张数据中抽取100张图像组成的测试数据集

2020-04-03

kafka搭建套装.zip

20200326这里存放的是今日我搭建kafka过程中使用到的套装文件,可以直接下载使用的,完整的搭建实战与环境配置问题解决

2020-03-26

深度学习目标检测数据标注器.rar

深度学习目标检测数据标注器 很不错,很好用的一款数据标注工具

2020-02-19

全国火车站标注名称编码集合.zip

《全国火车站标注名称编码集合》主要是日常工作实践过程中使用汇总的名称、编码数据

2019-11-06

深度学习开发者峰会课件.zip

深度学习开发者峰会课件主要讲解当前深度学习的前沿科技成果

2019-10-31

Microsoft Visual C++ 安装包【14.0和9.0】.rar

解决Python第三方库安装过程的报错问题。 Python2.7版本报错如下: error: Microsoft Visual C++ 9.0 is required. 安装文件为: VCForPython27.msi Python3.6版本报错如下: error: Microsoft Visual C++ 14.0 is required. 安装文件为: Microsoft Visual C++ 14.0.exe

2019-09-05

pyltp安装包whl文件.rar

pyltp-0.2.1-cp35-cp35m-win_amd64.whl为Python3.5的安装版本 pyltp-0.2.1-cp36-cp36m-win_amd64.whl为Python3.6的安装版本 当使用pip安装方式安装失败的时候可以使用whl文件进行安装,亲测安装成功!

2019-08-08

中科院自动化所宗成庆-自然语言处理方法与应用.rar

中科院自动化所宗成庆-自然语言处理方法与应用 全文共108页,宗老师从自然语言处理的起源、发展、兴起、瓶颈、巅峰等节点进行了详细的说明,非常好的资料!

2019-08-08

LDA数学八卦.rar

LDA数学八卦是初学者学习LDA算法很经典很好理解的学习资料,以生活形象和严谨细致的推导讲解了LDA模型。

2019-08-08

2018知识图谱发展报告.rar

前言 1. 知识图谱的研究目标与意义 知识图谱Knowledge Graph以结构化的形式描述客观世界中概念、实体及 其关系将互联网的信息表达成更接近人类认知世界的形式提供了一种更好地 组织、管理和理解互联网海量信息的能力。知识图谱给互联网语义搜索带来了活 力同时也在智能问答中显示出强大威力已经成为互联网知识驱动的智能应用 的基础设施。知识图谱与大数据和深度学习一起成为推动互联网和人工智能发 展的核心驱动力之一。

2019-08-08

SQL SERVER查增改删,导入导出简便工具.rar

SQL SERVER查增改删,导入导出简便工具 该工具主要是讲常用的SQLServer数据操作做了一个打包和封装,能够很方便地进行使用!

2019-08-08

TensorFlow官方文档中文版.rar

TensorFlow官方文档中文版 是很全面透彻完整的Tensorflow实践学习中文学习资料,值得收藏使用!

2019-08-08

StatisticsWithJulia.pdf

Julia 正在迅速成为数据科学、统计学、机器学习、人工智能和一般科学计算领域的主要语言之一。它像 R 语言、Python 和 Matlab 一样易于使用,但由于其类型系统和即时编译,它可以更有效地执行计算。这使得它在运行时间和开发时间方面都很快。此外,还有多种多样的 Julia 包。这其中就包括数据科学家、统计学家或机器学习从业者需要的高级方法。因此,该语言具有广泛的应用范围。

2019-07-29

国家统计局2009-2018行政区划编码.zip

国家统计局2009-2018行政区划编码 包括从2009年以来至今历年来国家统计局公布出来的行政区划代码数据 历时一天爬取完成,提供给有需要的人

2019-07-16

京东大数据技术白皮书(全文120页).zip

京东大数据技术白皮书(全文120页)是总体概况对京东最新的技术架构体系的一次全方位的介绍,值得入手细读。

2019-07-16

Python数据分析与数据化运营.zip

《Python数据分析与数据化运营》从实战角度讲解如何利用Python进行数据分析、挖掘和数据化运营的著作,不仅对数据分析的关键技术和技巧进行了总结.......

2019-07-15

坦克大战tank.zip

坦克大战tank:很古老却又经典的一款小游戏,完全基于python开发,我将其打包生成exe文件,感兴趣的可以拿去玩哈。 相应的博客介绍在这里:https://blog.csdn.net/Together_CZ

2019-06-14

3万个高可用的IP代理

这里的IP代理均来源于网络数据获取,通过进一步解析处理后保存到本地json文件中,在爬虫启动的时候随机加载可用IP来构建代理 代理约有3万个

2019-04-15

推荐算法数据集

python基于Suprise模块构建推荐算法模型,实现电影、书籍等资源的推荐 文中使用到的数据集

2019-01-14

Docker技术入门与实战

简介在云计算时代,开发者将应用转移到云上已经解决了硬件管理的问题,然而软件配置和管理相关的问题依然存在。Docker的出现正好能帮助软件开发者开阔思路,尝试新的软件管理方法来解决这个问题。通过掌握Docker,开发人员便可享受先进的自动化运维理念和工具,无需运维人员介入即可顺利运行于各种运行环境。《Docker技术入门与实战》分为三大部分:Docker入门、实战案例和高级话题。第一部分(第1~8章)介绍Docker与虚拟化技术的基本概念,包括安装、镜像、容器、仓库、数据管理等;第二部分(第9~17章)通过案例介绍Docker的应用方法,包括与各种操作系统平台、SSH服务的镜像、Web服务器与应用、数据库的应用、各类编程语言的接口、私有仓库等;第三部分(第18~21章)是一些高级话题,如Docker核心技术、安全、高级网络配置、相关项目等。《Docker技术入门与实战》从基本原理开始入手,深入浅出地讲解Docker的构建与操作,内容系统全面,可帮助开发人员、运维人员快速部署应用。 第2版前言 第1版前言 第一部分 基础入门 第1章 初识容器与Docker 1.1 什么是Docker 1.2 为什么要使用Docker 1.3 Docker与虚拟化 1.4 本章小结 第2章 核心概念与安装配置 2.1 核心概念 2.2 安装Docker 2.3 配置Docker服务 2.4 推荐实践环境 2.5 本章小结 第3章 使用Docker镜像 3.1 获取镜像 3.2 查看镜像信息 3.3 搜寻镜像 3.4 删除镜像 3.5 创建镜像 3.6 存出和载入镜像 3.7 上传镜像 3.8 本章小结 第4章 操作Docker容器 4.1 创建容器 4.2 终止容器 4.3 进入容器 4.4 删除容器 4.5 导入和导出容器 4.6 本章小结 第5章 访问Docker仓库 5.1 Docker Hub公共镜像市场 5.2 时速云镜像市场 5.3 搭建本地私有仓库 5.4 本章小结 第6章 Docker数据管理 6.1 数据卷 6.2 数据卷容器 6.3 利用数据卷容器来迁移数据 6.4 本章小结 第7章 端口映射与容器互联 7.1 端口映射实现访问容器 7.2 互联机制实现便捷互访 7.3 本章小结 第8章 使用Dockerfile创建镜像 8.1 基本结构 8.2 指令说明 8.3 创建镜像 8.4 使用.dockerignore文件 8.5 最佳实践 8.6 本章小结 第二部分 实战案例 第9章 操作系统 9.1 BusyBox 9.2 Alpine 9.3 Debian/Ubuntu 9.4 CentOS/Fedora 9.5 本章小结 第10章 为镜像添加SSH服务 10.1 基于commit命令创建 10.2 使用Dockerfile创建 10.3 本章小结 第11章 Web服务与应用 11.1 Apache 11.2 Nginx 11.3 Tomcat 11.4 Jetty 11.5 LAMP 11.6 CMS 11.7 持续开发与管理 11.8 本章小结 第12章 数据库应用 12.1 MySQL 12.2 MongoDB 12.3 Redis 12.4 Memcached 12.5 CouchDB 12.6 Cassandra 12.7 本章小结 第13章 分布式处理与大数据平台 13.1 RabbitMQ 13.2 Celery 13.3 Hadoop 13.4 Spark 13.5 Storm 13.6 Elasticsearch 13.7 本章小结 第14章 编程开发 14.1 C/C++ 14.2 Java 14.3 Python 14.4 JavaScript 14.5 Go 14.6 PHP 14.7 Ruby 14.8 Perl 14.9 R 14.10 Erlang 14.11 本章小结 第15章 容器与云服务 15.1 公有云容器服务 15.2 容器云服务 15.3 阿里云容器服务 15.4 时速云容器平台 15.5 本章小结 第16章 容器实战思考 16.1 Docker为什么会成功 16.2 研发人员该如何看容器 16.3 容器化开发模式 16.4 容器与生产环境 16.5 本章小结 第三部分 进阶技能 第17章 Docker核心实现技术 17.1 基本架构 17.2 命名空间 17.3 控制组 17.4 联合文件系统 17.5 Linux网络虚拟化 17.6 本章小结 第18章 配置私有仓库 18.1 安装Docker Registry 18.2 配置TLS证书 18.3 管理访问权限 18.4 配置Registry 18.5 批量管理镜像 18.6 使用通知系统 18.7 本章小结 第19章 安全防护与配置 19.1 命名空间隔离的安全 19.2 控制组资源控制的安全 19.3 内核能力机制 19.4 Docker服务端的防护 19.5 更多安全特性的使用 19.6 使用第三方检测工具 19.7 本章小结 第20章 高级网络功能 20.1 网络启动与配置参数 20.2 配置容器DNS和主机名 20.3 容器访问控制 20.4 映射容器端口到宿主主机的实现 20.5 配置docker0网桥 20.6 自定义网桥 20.7 使用OpenvSwitch网桥 20.8 创建一个点到点连接 20.9 本章小结 第21章 libnetwork插件化网络功能 21.1 容器网络模型 21.2 Docker网络相关命令 21.3 构建跨主机容器网络 21.4 本章小结 第四部分 开源项目 第22章 Etcd——高可用的键值数据库 22.1 简介 22.2 安装和使用Etcd 22.3 使用etcdctl客户端 22.4 Etcd集群管理 22.5 本章小结 第23章 Docker三剑客之Docker Machine 23.1 简介 23.2 安装Machine 23.3 使用Machine 23.4 Machine命令 23.5 本章小结 第24章 Docker三剑客之Docker Compose 24.1 简介 24.2 安装与卸载 24.3 Compose命令说明 24.4 Compose环境变量 24.5 Compose模板文件 24.6 Compose应用案例一:Web负载均衡 24.7 Compose应用案例二:大数据Spark集群 24.8 本章小结 第25章 Docker三剑客之Docker Swarm 25.1 简介 25.2 安装Swarm 25.3 使用Swarm 25.4 使用其他服务发现后端 25.5 Swarm中的调度器 25.6 Swarm中的过滤器 25.7 本章小结 第26章 Mesos——优秀的集群资源调度平台 26.1 简介 26.2 Mesos安装与使用 26.3 原理与架构 26.4 Mesos配置项解析 26.5 日志与监控 26.6 常见应用框架 26.7 本章小结 第27章 Kubernetes——生产级容器集群平台 27.1 简介 27.2 核心概念 27.3 快速体验 27.4 安装部署 27.5 重要组件 27.6 使用kubectl 27.7 网络设计 27.8 本章小结 第28章 其他相关项目 28.1 平台即服务方案 28.2 持续集成平台Drone 28.3 容器管理 28.4 编程开发 28.5 网络支持 28.6 日志处理 28.7 服务代理工具 28.8 标准与规范 28.9 其他项目 28.10 本章小结 附录 附录A 常见问题总结 附录B Docker命令查询 附录C 参考资源链接

2018-12-16

第一本Docker书(完整版)

第一本Docker书(完整版) Docker是一个开源的应用容器引擎,开发者可以利用Docker打包自己的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。本书由Docker公司前服务与支持副总裁James Turnbull编写,是Docker开发指南。 目录章节 第1 章 简介 1.1 Docker 简介 1.1.1 提供一个简单、轻量的建模方式 1.1.2 职责的逻辑分离 1.1.3 快速、高效的开发生命周期 1.1.4 鼓励使用面向服务的架构 1.2 Docker 组件 1.2.1 Docker 客户端和服务器 1.2.2 Docker 镜像 1.2.3 Registry 1.2.4 容器 1.3 我们能用Docker 做什么 1.4 Docker 与配置管理 1.5 Docker 的技术组件 1.6 本书的内容 1.7 Docker 资源 第2 章 安装Docker 2.1 安装Docker 的先决条件 2.2 在Ubuntu 中安装Docker 2.2.1 检查前提条件 2.2.2 安装Docker 2.2.3 Docker 与UFW 2.3 在Red Hat 和Red Hat 系发行版中安装Docker 2.3.1 检查前提条件 2.3.2 安装Docker 2.3.3 在Red Hat 系发行版中启动Docker 守护进程 2.4 在OS X 中安装Boot2Docker 2.4.1 在OS X 中安装Boot2Docker 2.4.2 在OS X 中启动Boot2Docker 2.4.3 测试Boot2Docker 2.5 在Windows 中安装Boot2Docker 2.5.1 在Windows 中安装Boot2Docker 2.5.2 在Windows 中启动Boot2Docker 2.5.3 测试Boot2Docker 2.6 使用本书的Boot2Docker 示例 2.7 Docker 安装脚本 2.8 二进制安装 2.9 Docker 守护进程 2.9.1 配置Docker 守护进程 2.9.2 检查Docker 守护进程是否正在运行 2.10 升级Docker 2.11 Docker 图形用户界面 2.12 小结 第3 章 Docker 入门 3.1 确保Docker 已经就绪 3.2 运行我们的第一个容器 3.3 使用第一个容器 3.4 容器命名 3.5 重新启动已经停止的容器 3.6 附着到容器上 3.7 创建守护式容器 3.8 容器内部都在干些什么 3.9 查看容器内的进程 3.10 在容器内部运行进程 3.11 停止守护式容器 3.12 自动重启容器 3.13 深入容器 3.14 删除容器 3.15 小结 第4 章 使用Docker 镜像和仓库 4.1 什么是Docker 镜像 4.2 列出镜像 4.3 拉取镜像 4.4 查找镜像 4.5 构建镜像 4.5.1 创建Docker Hub 账号 4.5.2 用Docker 的commit 命令创建镜像 4.5.3 用Dockerfile构建镜像 4.5.4 基于Dockerfile构建新镜像 4.5.5 指令失败时会怎样 4.5.6 Dockerfile 和构建缓存 4.5.7 基于构建缓存的Dockerfile模板 4.5.8 查看新镜像 4.5.9 从新镜像启动容器 4.5.10 Dockerfile 指令 4.6 将镜像推送到Docker Hub 4.7 删除镜像 4.8 运行自己的Docker Registry 4.8.1 从容器运行Registry 4.8.2 测试新Registry 4.9 其他可选Registry 服务 4.10 小结 第5 章 在测试中使用Docker 5.1 使用Docker 测试静态网站 5.1.1 Sample 网站的初始Dockerfile 5.1.2 构建Sample 网站和Nginx镜像 5.1.3 从Sample 网站和Nginx 镜像构建容器 5.1.4 修改网站 5.2 使用Docker 构建并测试Web应用程序 5.2.1 构建Sinatra 应用程序 5.2.2 创建Sinatra 容器 5.2.3 构建Redis 镜像和容器 5.2.4 连接到Redis 容器 5.2.5 连接Redis 5.2.6 让Docker 容器互连 5.2.7 使用容器连接来通信 5.3 Docker 用于持续集成 5.3.1 构建Jenkins 和Docker服务器 5.3.2 创建新的Jenkins 作业 5.3.3 运行Jenkins 作业 5.3.4 与Jenkins 作业有关的下一步 5.3.5 Jenkins 设置小结 5.4 多配置的Jenkins 5.4.1 创建多配置作业 5.4.2 测试多配置作业 5.4.3 Jenkins 多配置作业小结 5.5 其他选择 5.5.1 Drone 5.5.2 Shippable 5.6 小结 第6 章 使用Docker 构建服务 6.1 构建第一个应用 6.1.1 Jekyll 基础镜像 6.1.2 构建Jekyll 基础镜像 6.1.3 Apache 镜像 6.1.4 构建Jekylll Apache 镜像 6.1.5 启动Jekylll 网站 6.1.6 更新Jekyll 网站 6.1.7 备份Jekyll 卷 6.1.8 扩展Jekyll 示例网站 6.2 使用Docker 构建一个Java应用服务 6.2.1 WAR 文件的获取器 6.2.2 获取WAR 文件 6.2.3 Tomecat7 应用服务器 6.2.4 运行WAR 文件 6.2.5 基于Tomcat 应用服务器的构建服务 6.3 多容器的应用栈 6.3.1 Node.js 镜像 6.3.2 Redis 基础镜像 6.3.3 Redis 主镜像 6.3.4 Redis 从镜像 6.3.5 创建Redis 后端集群 6.3.6 创建Node 容器 6.3.7 捕获应用日志 6.3.8 Node 程序栈的小结 6.4 不使用SSH 管理Docker 容器 6.5 小结 第7 章 使用Fig 编配Docker 7.1 Fig 7.1.1 安装Fig 7.1.2 获取示例应用 7.1.3 fig.yml 文件 7.1.4 运行Fig 7.1.5 使用Fig 7.1.6 Fig 小结 7.2 Consul、服务发现和Docker 7.2.1 构建Consul 镜像 7.2.2 在本地测试Consul 容器 7.2.3 使用Docker 运行Consul集群 7.2.4 启动具有自启动功能的Consul 节点 7.2.5 启动其余节点 7.2.6 配合Consul,在Docker里运行一个分布式服务 7.3 其他编配工具和组件 7.3.1 Fleet 和etcd 7.3.2 Kubernetes 7.3.3 Apache Mesos 7.3.4 Helios 7.3.5 Centurion 7.3.6 Libswarm 7.4 小结 第8 章 使用Docker API 8.1 Docker API 8.2 初识Remote API 8.3 测试Docker Remote API 8.3.1 通过API 来管理Docker镜像 8.3.2 通过API 管理Docker容器 8.4 改进TProv 应用 8.5 对Docker Remote API 进行认证 8.5.1 建立证书授权中心 8.5.2 创建服务器的证书签名请求和密钥 8.5.3 配置Docker 守护进程 8.5.4 创建客户端证书和秘钥 8.5.5 配置Docker 客户端开启认证功能 8.6 小结 第9 章 获得帮助和对Docker进行改进 9.1 获得帮助 9.1.1 Docker 用户和开发邮件列表 9.1.2 IRC 上的Docker 9.1.3 GitHub 上的Docker 9.2 报告Docker 的问题 9.3 搭建构建环境 9.3.1 安装Docker 9.3.2 安装源代码和构建工具 9.3.3 检出源代码 9.3.4 贡献文档 9.3.5 构建开发环境 9.3.6 运行测试 9.3.7 在开发环境中使用Docker 9.3.8 发起pull request 9.3.9 批准合并和维护者 9.4 小结

2018-12-16

PyTorch深度学习实战

PyTorch深度学习实战 PyTorch是什么? 这是一个基于Python的科学计算包,其旨在服务两类场合: 替代numpy发挥GPU潜能 一个提供了高度灵活性和效率的深度学习实验性平台

2018-12-07

Deep Learning with PyTorch

PyTorch即 Torch 的 Python 版本。Torch 是由 Facebook 发布的深度学习框架,因支持动态定义计算图,相比于 Tensorflow 使用起来更为灵活方便,特别适合中小型机器学习项目和深度学习初学者。但因为 Torch 的开发语言是Lua,导致它在国内一直很小众。所以,在千呼万唤下,PyTorch应运而生!PyTorch 继承了 Troch 的灵活特性,又使用广为流行的 Python 作为开发语言,所以一经推出就广受欢迎!

2018-12-07

Python高效开发实战——Django、Tornado、Flask、Twisted

Python高效开发实战——Django、Tornado、Flask、Twisted一书分为三部分:第1部分是基础篇,带领初学者实践Python开发环境和掌握基本语法,同时对网络协议、Web客户端技术、数据库建模编程等网络编程基础深入浅出地进行学习;第2部分是框架篇,学习当前最流行的PythonWeb框架,即Django、Tornado、Flask和Twisted,达到对各种Python网络技术融会贯通的目的;第3部分是实战篇,分别对4种框架进行项目实践,利用其各自的特点开发适用于不同场景的网络程序。

2018-11-27

关联挖掘算法详解

关联挖掘算法主要包括Apriori和FP-Growth,两者对于不同的场景有着显著地差异性...

2018-11-20

WEKA完整中文教程

WEKA中文指南是weka很好的学习资料,包含两份完整的中文说明文档,能够帮助我们快速上手weka。

2018-11-19

python2和python3版本可用的OpenCV安装包

python2和python3版本可用的OpenCV安装包里面包含了python2的安装包和python3的安装包,经过测试成功安装,十分方便。

2018-11-16

Python计算机视觉编程(含源码)

Python计算机视觉编程(含源码)依赖Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、三维重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。另外,书中附带的练习还能让读者巩固并学会应用编程知识。

2018-11-16

linecache安装包(python2和python3兼容)

linecache模块可以读取文件并将文件内容缓存起来,方便后面多次读取。这个模块原本被设计用来读取Python模块的源代码,所以当一个文件名不在指定路径下的时候,模块会通过搜索路径(search path)来尝试读取文件

2018-11-15

百度脑图桌面版

百度脑图是一款很好的思维发散工具,能够快速帮助使用者来构建思维导图,百度脑图桌面版与web版本有相同的功能,只不过可以当做软件离线使用,非常方便

2018-11-09

PMF正交矩阵因子分解

PMF正交矩阵因子分解 主要讲解EPA PMF软件的使用,是很好的中文使用文档说明,值得学习参考,对于大气环境数据的分析很有帮助。

2018-11-09

Together_CZ的留言板

发表于 2020-01-02 最后回复 2020-02-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除