自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Together_CZ的博客

种一棵树,最好的时间是十年前,其次是现在

  • 博客(29)
  • 资源 (65)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 分享一个好的数据集资源目录

在网上查找资料的时候发现了一个很不错的仓库,主要就是存储日常用到的机器学习深度学习数据集的,都是可以直接下载使用的,觉得这个很好的原因就是:很多数据集本来就是公开开放的,很多学生都会根据网上的教程来进行自己的学习和实验。可是有的人却把这个当做是赚积分赚C币的手段,就像下面这样的: 觉得真心是很没有意思,我倒不是说什么数据集、电子书之类的学习资料不能上传然后用来赚取积分,...

2019-06-28 15:51:56 1254

原创 'scipy.misc' has no attribute 'imresize'报错问题解决

使用scipy来对矩阵或者是数组形式的数据来进行处理是很常见的做法, 在实际使用的过程中由于版本不兼容,或者是数据的问题或报各种各样的错误,比如在我之前的一篇博文里面就解决了一个错误【from scipy.misc import imread时报错:cannot import name imread】地址在这里,需要的话可以看看。 今天在使用scipy的时候再一次地报错了...

2019-06-27 17:10:57 4302

原创 .sql文件导入mysql数据库中

在实际项目中,我们要进行数据分析工作的话往往是需要从数据库中提取数据的,今天有一个需要就是leader给我一个.sql文件需要我基于这个我呢间进行相应的数据分析和报告输出工作,这里简单记录一下基于命令行的.sql文件导入过程:mysql -u root -p passworduse mytable;source D:\data\data.sql 执行上述命令...

2019-06-25 19:15:14 3410

原创 数据分析中数据概览神器pandas_profiling介绍

Numpy、Scipy、Pandas、Matlpotlib在数据分析工程师手里几乎都是必备的工具选项,每一个库都有他自己强势的领域,让人爱不释手,当然还有其他的很多库,这里没有去一一列举出来。 在我前面的博文里面有一篇文章详细地介绍了一个详细的数据分析挖掘流程,地址在这里,感兴趣的话可以去看看。 数据分析领域中有一个部分是很重要的,那就是数据探索,不...

2019-06-25 17:23:30 1511

原创 mysql-8.0.16-winx64详细安装教程

在我之前的博客里面是有mysql安装相关的博客的,但是由于版本的更新可能会在安装过程中出现一些差别,那么今天为什么我又要再次写一次安装的教程呢?绝不对是因为mysql版本更新了,是因为我上周电脑坏掉了,固态硬盘死活起不来了,没办法只好重装了系统,没了固态大哥的支撑,现在的系统简单卡的不行。。。 好了,不吐槽这些了,不仅系统速度卡了,我之前很多环境都没了,毕竟是重装...

2019-06-25 16:48:36 6951

原创 pyspark分类算法之多层感知机神经网络分类器模型实践【MLPClassifier】

继上文的集成学习模型之后,本文实践使用的pyspark提供的多层感知机神经网络模型,这是一种比较简单但是却又很重要的神经网络模型。MLP是一种前向结构的人工神经网络,映射一组输入向量到一组输出向量。MLP可以被看做是一个有向图,由多个节点层组成,每一层全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元(或称处理单元)。一种被称为反向传播算法的监督学习方法常被...

2019-06-21 10:01:22 1641

原创 一个完整的数据分析、挖掘流程详细介绍

完整的数据分析、挖掘流程简介这是在一次面试过程中遇到的一个问题,自己回答了个大概,但是缺少了一部分的东西,所以就抽时间查阅了一些相关的资料来总结了一下,也算是自己的一个学习过程了。一个完整的数据分析或者是数据挖掘过程包括许多个不同的阶段,每个阶段的作用都不相同但却密不可分,下面简单对自己理解总结的一个完整的分析挖掘流程中的各个阶段进行简单介绍。一个完整的分析挖掘流程大致包括以下几个方面:...

2019-06-21 10:00:03 6756

原创 python基于pip和conda配置国内安装源,提升下载安装性能

python基于pip和conda配置国内安装源,提升下载安装性能这是我在CSDN改版升级之后第二次使用markdown编辑器来写博客,markdown我个人觉得还是很不错的,主要就是用的不是很多,所以在实际写的时候可能问题会比较多一点,不管怎么说,凡事都是一个熟能生巧的过程,坚持学习吧!接下来言归正传,进入今天的主题内容:源就是我们使用的第三方包的下载地址,通过配置国内的下载镜像可以实现库...

2019-06-21 09:55:33 1234

原创 pyspark分类算法之梯度提升决策树分类器模型GBDT实践【gradientBoostedTreeClassifier】

本文紧接上文的随机森林分类器模型,实践的同样是分类算法模型,随机森林模型和GBDT模型是机器学习领域里面非常重要的两种集成学习模型,两种模型虽然均采用了集成策略来进一步提升基分类器模型的性能,但是本质上是有区别的,前者采用并行的训练方式,后者采用的是串行的训练方式。同样,下面贴一下自己学习pyspark以来的记录笔记,具体如下: pyspark顾名思...

2019-06-21 09:06:28 1272

原创 pyspark分类算法之随机森林分类器模型实践【randomForestClassifier】

本文紧接上文的决策树分类器模型,实践的同样是分类算法模型,随机森林模型可以简单理解为集成的决策树模型,实质上随机森林模型的设计思想也的确如此,它采用了一种投票的思想来完成了模型最终的决策,将多个弱分类器模型进行集成,来达到提升基分类器模型性能的效果。同样,下面贴一下自己学习pyspark以来的记录笔记,具体如下: pyspark顾名思义就是由pytho...

2019-06-20 19:55:10 2393 1

原创 python坦克大战小游戏,打包为exe文件

今天发现了一个好玩的小项目,做的就是坦克大战的,看到它的一瞬间让我想起了小时候泡在4399网站里面的时光了,我果断下载下来跑了起来,做的还是可以的,这里的可以就是说视觉效果上的可以,至于具体内容细节什么还是有一些bug的,比如我自己摧毁“老窝”的时候居然没有游戏结束,等等。 既然项目别人已经做好了,我就不多做什么工作了,想着运行py脚本多麻烦,能够把游戏打包成为exe文件...

2019-06-20 13:50:12 2036

原创 微软开源可解释机器学习框架 interpret 学习实践

机器学习、深度学习往往给人一种黑盒的感觉,也就是它所表现出来的可解释性程度不高或者是很低,这就给学习使用带来了影响,如果能够对于机器学习的结果进行更好的解释那将会是很棒的。 今天基于微软开源的可解释机器学习框架interpret进行简单的学习实践,主要是想上手我刚刚配置好的jupyter环境来跑一波代码,下面先给出来GitHub地址,在这里。 使用基本的要求是p...

2019-06-19 15:36:41 1268 4

原创 交互式编程神器jupyter notebook环境搭建【不需要虚拟环境就能实现python2版本和python3版本自由切换】

接触python也有将近3年的时间了,我从来都不是一个很擅长去编程的人,也可能是在教学式的环境里面难以有很实践性质的功底吧,python这个语言是零基础学然后一路摸爬滚打,很多声音都说它很简单,但是我想说的是:任何事都是入门简单,精通难。这么长的一段时间里我经常会发现越学新的东西反而越多,越进步反而觉得前面的台阶越看不到尽头,可能这还是说明目前的我还是处于一个比较初级的学习阶段吧。...

2019-06-19 13:41:58 522

原创 python词云可视化方法总结记录【简单词云+背景图片词云+自定义字体颜色词云】

词云是一种非常漂亮的可视化展示方式,正所谓一图胜过千言万语,词云在之前的项目中我也有过很多的使用,可能对于我来说,一种很好的自我介绍方式就是词云吧,就像下面这样的: 个人觉还是会比枯燥的文字语言描述性的介绍会更吸引人一点吧。 今天不是说要怎么用词云来做个人介绍,而是对工作中使用到比较多的词云计较做了一下总结,主要是包括三个方面:1、诸如上面的简单形式...

2019-06-18 10:17:34 4407 2

原创 pyspark连接MySQL数据库,执行SQL语句,返回数据查询结果

在日常的工作中,MySQL和SQLServer是经常使用到的两种数据库,直接连接使用的话是很简单的,如果说需要基于pyspark做连接工具,进行相应的数据查询操作的话就会复杂一点,今天简单的基于pyspark模块实现了连接MySQL数据库,执行给定的查询语句,返回查询结果数据。 接下来简单的说一点自己学习使用pyspark以来的记录学习,具体如下:py...

2019-06-13 15:09:49 2230

原创 python实现不同图像数据的叠加处理、实现多张图像数据以子图形式组合为新的图像数据【图像叠加、图像组合】

python2中提供了PIL基础的图像数据出来模块,在python3中更名为了pillow模块,名字虽然发生了改变,但是提供的方法和功能都是一样的,对于日常基础的图像数据处理分析来说是足够用了。 当前的一个要求就是给定不同的图像数据实现图像数据的叠加处理,此时的叠加处理是在图像大小不变的情况下叠加到一起的,比如:一张轮船在大海航行的图像与一张战斗机在天空滑翔的...

2019-06-13 11:06:21 3157

原创 PIL图像处理模块paste方法简单使用

python2中提供了PIL基础的图像数据出来模块,在python3中更名为了pillow模块,名字虽然发生了改变,但是提供的方法和功能都是一样的,对于日常基础的图像数据处理分析来说是足够用了的,现在正好有一个需求点就是要对给定的图像数据指定的部分进行剪切、替换处理,剪切跟替换操作的本质其实都是一样的,先要得到该区域的左下顶点和右上顶点的坐标然后才能进行相应的操作。 这篇文...

2019-06-13 10:38:49 2343

原创 pyspark分类算法之决策树分类器模型实践【decisionTreeClassifier】

本文紧接上文的逻辑回归分类器模型,实践的同样是分类算法模型,决策树模型是机器学习领域中简单却又强悍,可解释程度很高的一种模型,之前较多使用的库是sklearn,这里面提供了绝大多数机器学习模型的实现和应用方法,很nice的,现在要基于spark来完成决策树模型的简单使用,同样是依托于官方提供的实例,在完整地理解透彻之后,才会进行自己的设计与改造,这是我一般的学习思路。 ...

2019-06-13 09:25:12 1931

原创 pyspark连接SQLServer数据库,执行SQL语句,返回数据查询结果

在日常的工作中,MySQL和SQLServer是经常使用到的两种数据库,直接连接使用的话是很简单的,如果说需要基于pyspark做连接工具,进行相应的数据查询操作的话就会复杂一点,今天简单的基于pyspark模块实现了连接SQLServer数据库,执行给定的查询语句,返回查询结果数据。 pyspark顾名思义就是由python和spark组合使用的。Spark提供了一个...

2019-06-12 17:34:35 1757

原创 pyspark分类算法之逻辑回归模型实践【binomialLogisticRegression+multinomialLogisticRegression】

最近在使用pyspark来进行spark编程,之前对这个没有了解过,所以接下来需要多花点时间学习这个模块了,今天主要是简单地基于官方给出来实例来实践一下逻辑回归分类模型,pyspark提供的逻辑回归分类模型主要包括:二项逻辑回归和多项逻辑回归,各自有对应的适用场景。 pyspark顾名思义就是由python和spark组合使用的。Spark提供了一个Python_Shell,...

2019-06-12 16:21:19 1989 2

原创 python地图空间可视化神器folium实现以阿里巴巴园区为中心绘制租房小区位置信息

folium是一款非常强大的,地理信息数据可视化工具,由python编写,提供了很便利的使用方法,可以让我们在没有前端、vue、js、leaflet等的基础前提下完成数据的可视化。 六月到了,七月也快了,又是一年租房的火热季,我们正好也需要换房子了,不妨做一个房源位置信息在地图上的可视化展示吧。目前以阿里巴巴园区为中心,指定半径距离绘制圆形区域,同时将关注的几个小区的房源...

2019-06-12 11:10:43 1730

原创 python报表利器TableOne学习实践

报表是很多业务中都需要使用到的一项工具,java里面有很多优秀的报表软件,当前商业化的报表软件做的也是很优秀的,那么python中有没有可以免费使用的报表软件或者库呢,当然是有的,今天就简单学习一下报表利器tableone的相关使用,,别看简单,但是功能强大,tableone的源码都是可以读读的,毕竟不是很多。 以美国大选数据为例进行简单的统计分析生成报表具体实现如下:...

2019-06-12 09:57:39 1199

原创 python中的auto_ml自动机器学习框架学习实践

之前就有接触过auto_ml这个自动机器学习框架,但是一直没有时间做一个简单的记录总结,以便于后续有时间继续学习,我相信随着机器学习的普及推广和发展,自动机器学习一定会占据越来越大的作用,因为机器学习、深度学习里面很大的一部分时间都要花在特征工程、模型选择、组合和参数调优上面,auto_ml框架提供了一种很好的解决思路,当前的自动学习框架也有很多,想要完整地进行学习还是需要花费一定的时间...

2019-06-12 09:23:26 1512

原创 python基于Flask构建Web服务,解决Flask数据请求中的跨域问题

Flask是一款十分轻量级的web服务框架,能够很方便快捷地将本地的python数据程序构建称为一个web服务,进而方便地被调用,在前后端分离的开发过程中,不可避免地会出现前端访问后台服务时出现跨域报错的问题,为了能够正常的进行web服务的访问,解决跨域问题成为了很关键的一环。 说起跨域请求,大家首先想到的就会是设置请求头Access-Control-Allow-Ori...

2019-06-11 21:24:19 731

原创 常用SQL查询语句整理笔记【持续更新】

常用SQL查询语句整理笔记查询表所有数据 SELECT * FROM myTable查询指定学号学生的信息 SELECT * FROM myTable WHERE studentId=‘001’IN关键字查询 SELECT name,age,height FROM myTable WHERE studentId in (‘001’,‘002’,‘003’)LIKE关键词模糊查询 ...

2019-06-11 15:47:29 681

原创 python中PIL.Image,OpenCV,Numpy图像格式相互转换

图像处理领域中有很多开源成熟的工具模块和方法可以直接进行使用,目前我主要使用到的库主要包括:PIL、Numpy和OpenCV,其中,PIL是Python自带的模块,在python3中变成了Pillow,名字不同但是方法都是一样的,Numpy是一个科学数值计算模块,因为图像数据本质上是矩阵数据,所以这里也就用到了Numpy模块了,最后一个OpenCV在图像数据处理领域里面是大名鼎鼎的存在...

2019-06-10 14:37:01 4869 5

原创 python浮点数整数、小数分离,整数取整

Python里面提供了很友好的浮点数整数取整或者是整数、小数部分分离的相关函数,之前这方面我使用的较为频繁地两个方法是ceil和floor,两个方法都是math模块提供的,分别完成的是对给定数字的向上取整和向下取整两个工作。 在需要进行数字整数、小数部分分离的时候我使用的是math模块提供的floor方法来间接完成的,具体实现如下:def numSplit2(nu...

2019-06-10 14:05:42 9957

原创 Python实现给定两点经纬度数据求解两点平面直线距离与方位角

在GIS开发过程中,空间直角坐标系与求坐标系内的点坐标互相转化是很经常的事情,比如:给你两个点以及这两个点各自的经纬度数据,需要求解给定两点在空间坐标系内的直线距离以及两点之间的方位角,方位角就是从正北方向顺时针旋转到两点连线位置处的夹角值;又或者,给定你一点的经纬度数据以及另一点与该点的方位角和直线距离值,求解另一点所处位置的经纬度数据,等等,这样的转化求解需求还有很多。 ...

2019-06-04 16:09:25 1842

原创 leaflet地图区域数据可视化

地图上数据的展示对于一些有要求的场景里面还是很重要的,vue是前端经常使用的开发语言,leaflet与vue能够很好地进行融合使用,对于GIS相关的数据学习我也仅仅只是停留在皮毛上面,今天主要是简单地基于leaflet地图框架来对指定区域进行可视化,这个之后需要对不同的图层进行叠加处理,今天只是基于给定的经纬度数据来实现数据的可视化展示功能。 核心代码实现如下:&...

2019-06-03 10:57:37 2603

MSTAR数据集.zip

原始的【MSTAR数据集】是灰度图,这里经过转化处理后的【MSTAR数据集】,已经是3通道数据集了,后面可以直接用于模型的测试分析使用。

2020-05-29

Ubuntu下gcc-7.5.0安装完整依赖.zip

升级本地gcc版本所需安装包详情如下: gcc-7.5.0.tar.gz gmp-6.1.0.tar.bz2 mpc-1.0.3.tar.gz mpfr-3.1.4.tar.bz2 isl-0.16.1.tar.bz2

2020-05-22

windows下MongoDB最新的安装包

在官网中的链接中,MongoDB很难下载下来,还得输入邮箱什么的,这里是今天20180829尝试了很多次以后成功下载下来的windows下最新的安装包,分享出来给需要的人

2018-08-29

jsonfile查看工具

本软件是功能强大,实用便捷的json文件查看工具,可以方便地查看json数据内容

2018-08-14

xgboost-whl安装包(包含32位和64位)

xgboost-whl安装包是可以很方便的在windows7和windows10下安装修改版xgboost的包文件

2018-09-07

Yolov3随机手写数字数据集

Yolov3随机手写数字数据集 包含4000张可以直接使用的数据集 以及制作好的原始待检测视频+自己训练好的模型的检测视频

2020-10-15

算法设计与分析基础高清第三版

算法设计与分析基础高清第三版是在之前版本的基础上进一步提炼和编写的算法书籍,对于算法和数据结构的理解更为深入,相信对于算法的学习会有更多的帮助

2018-09-03

hadoop-mysql-hbase环境部署套装.zip

hadoop-mysql-hbase环境部署套装包括: hadoop-2.7.1.tar.gz hbase-1.1.5-bin.tar.gz jdk-8u162-linux-x64.tar.gz mysql-connector-java-5.1.40.tar.gz mysql-server_5.7.21-1ubuntu14.04_amd64.deb-bundle.tar

2020-09-08

相关性分析项目.zip

Python数据相关性分析实践完整项目【数据+代码+结果图片】 包含完整的数据和分析代码以及可视化代码,可以直接使用的完整项目数据

2020-07-08

猫狗大战迁移学习项目.zip

猫狗大战迁移学习实战项目所需的完整模型+测试数据,可以自己直接加载进行测试使用 results:自己基于迁移学习方法训练得到的二分类模型 test:bing搜索引擎图像数据爬虫结果,针对cat和dog两类目标分别爬取了200多张图像数据 test1:随机从kaggle数据集每类的12500张数据中抽取100张图像组成的测试数据集

2020-04-03

kafka搭建套装.zip

20200326这里存放的是今日我搭建kafka过程中使用到的套装文件,可以直接下载使用的,完整的搭建实战与环境配置问题解决

2020-03-26

深度学习目标检测数据标注器.rar

深度学习目标检测数据标注器 很不错,很好用的一款数据标注工具

2020-02-19

全国火车站标注名称编码集合.zip

《全国火车站标注名称编码集合》主要是日常工作实践过程中使用汇总的名称、编码数据

2019-11-06

深度学习开发者峰会课件.zip

深度学习开发者峰会课件主要讲解当前深度学习的前沿科技成果

2019-10-31

Microsoft Visual C++ 安装包【14.0和9.0】.rar

解决Python第三方库安装过程的报错问题。 Python2.7版本报错如下: error: Microsoft Visual C++ 9.0 is required. 安装文件为: VCForPython27.msi Python3.6版本报错如下: error: Microsoft Visual C++ 14.0 is required. 安装文件为: Microsoft Visual C++ 14.0.exe

2019-09-05

pyltp安装包whl文件.rar

pyltp-0.2.1-cp35-cp35m-win_amd64.whl为Python3.5的安装版本 pyltp-0.2.1-cp36-cp36m-win_amd64.whl为Python3.6的安装版本 当使用pip安装方式安装失败的时候可以使用whl文件进行安装,亲测安装成功!

2019-08-08

中科院自动化所宗成庆-自然语言处理方法与应用.rar

中科院自动化所宗成庆-自然语言处理方法与应用 全文共108页,宗老师从自然语言处理的起源、发展、兴起、瓶颈、巅峰等节点进行了详细的说明,非常好的资料!

2019-08-08

LDA数学八卦.rar

LDA数学八卦是初学者学习LDA算法很经典很好理解的学习资料,以生活形象和严谨细致的推导讲解了LDA模型。

2019-08-08

2018知识图谱发展报告.rar

前言 1. 知识图谱的研究目标与意义 知识图谱Knowledge Graph以结构化的形式描述客观世界中概念、实体及 其关系将互联网的信息表达成更接近人类认知世界的形式提供了一种更好地 组织、管理和理解互联网海量信息的能力。知识图谱给互联网语义搜索带来了活 力同时也在智能问答中显示出强大威力已经成为互联网知识驱动的智能应用 的基础设施。知识图谱与大数据和深度学习一起成为推动互联网和人工智能发 展的核心驱动力之一。

2019-08-08

SQL SERVER查增改删,导入导出简便工具.rar

SQL SERVER查增改删,导入导出简便工具 该工具主要是讲常用的SQLServer数据操作做了一个打包和封装,能够很方便地进行使用!

2019-08-08

TensorFlow官方文档中文版.rar

TensorFlow官方文档中文版 是很全面透彻完整的Tensorflow实践学习中文学习资料,值得收藏使用!

2019-08-08

StatisticsWithJulia.pdf

Julia 正在迅速成为数据科学、统计学、机器学习、人工智能和一般科学计算领域的主要语言之一。它像 R 语言、Python 和 Matlab 一样易于使用,但由于其类型系统和即时编译,它可以更有效地执行计算。这使得它在运行时间和开发时间方面都很快。此外,还有多种多样的 Julia 包。这其中就包括数据科学家、统计学家或机器学习从业者需要的高级方法。因此,该语言具有广泛的应用范围。

2019-07-29

国家统计局2009-2018行政区划编码.zip

国家统计局2009-2018行政区划编码 包括从2009年以来至今历年来国家统计局公布出来的行政区划代码数据 历时一天爬取完成,提供给有需要的人

2019-07-16

京东大数据技术白皮书(全文120页).zip

京东大数据技术白皮书(全文120页)是总体概况对京东最新的技术架构体系的一次全方位的介绍,值得入手细读。

2019-07-16

Python数据分析与数据化运营.zip

《Python数据分析与数据化运营》从实战角度讲解如何利用Python进行数据分析、挖掘和数据化运营的著作,不仅对数据分析的关键技术和技巧进行了总结.......

2019-07-15

坦克大战tank.zip

坦克大战tank:很古老却又经典的一款小游戏,完全基于python开发,我将其打包生成exe文件,感兴趣的可以拿去玩哈。 相应的博客介绍在这里:https://blog.csdn.net/Together_CZ

2019-06-14

3万个高可用的IP代理

这里的IP代理均来源于网络数据获取,通过进一步解析处理后保存到本地json文件中,在爬虫启动的时候随机加载可用IP来构建代理 代理约有3万个

2019-04-15

推荐算法数据集

python基于Suprise模块构建推荐算法模型,实现电影、书籍等资源的推荐 文中使用到的数据集

2019-01-14

Docker技术入门与实战

简介在云计算时代,开发者将应用转移到云上已经解决了硬件管理的问题,然而软件配置和管理相关的问题依然存在。Docker的出现正好能帮助软件开发者开阔思路,尝试新的软件管理方法来解决这个问题。通过掌握Docker,开发人员便可享受先进的自动化运维理念和工具,无需运维人员介入即可顺利运行于各种运行环境。《Docker技术入门与实战》分为三大部分:Docker入门、实战案例和高级话题。第一部分(第1~8章)介绍Docker与虚拟化技术的基本概念,包括安装、镜像、容器、仓库、数据管理等;第二部分(第9~17章)通过案例介绍Docker的应用方法,包括与各种操作系统平台、SSH服务的镜像、Web服务器与应用、数据库的应用、各类编程语言的接口、私有仓库等;第三部分(第18~21章)是一些高级话题,如Docker核心技术、安全、高级网络配置、相关项目等。《Docker技术入门与实战》从基本原理开始入手,深入浅出地讲解Docker的构建与操作,内容系统全面,可帮助开发人员、运维人员快速部署应用。 第2版前言 第1版前言 第一部分 基础入门 第1章 初识容器与Docker 1.1 什么是Docker 1.2 为什么要使用Docker 1.3 Docker与虚拟化 1.4 本章小结 第2章 核心概念与安装配置 2.1 核心概念 2.2 安装Docker 2.3 配置Docker服务 2.4 推荐实践环境 2.5 本章小结 第3章 使用Docker镜像 3.1 获取镜像 3.2 查看镜像信息 3.3 搜寻镜像 3.4 删除镜像 3.5 创建镜像 3.6 存出和载入镜像 3.7 上传镜像 3.8 本章小结 第4章 操作Docker容器 4.1 创建容器 4.2 终止容器 4.3 进入容器 4.4 删除容器 4.5 导入和导出容器 4.6 本章小结 第5章 访问Docker仓库 5.1 Docker Hub公共镜像市场 5.2 时速云镜像市场 5.3 搭建本地私有仓库 5.4 本章小结 第6章 Docker数据管理 6.1 数据卷 6.2 数据卷容器 6.3 利用数据卷容器来迁移数据 6.4 本章小结 第7章 端口映射与容器互联 7.1 端口映射实现访问容器 7.2 互联机制实现便捷互访 7.3 本章小结 第8章 使用Dockerfile创建镜像 8.1 基本结构 8.2 指令说明 8.3 创建镜像 8.4 使用.dockerignore文件 8.5 最佳实践 8.6 本章小结 第二部分 实战案例 第9章 操作系统 9.1 BusyBox 9.2 Alpine 9.3 Debian/Ubuntu 9.4 CentOS/Fedora 9.5 本章小结 第10章 为镜像添加SSH服务 10.1 基于commit命令创建 10.2 使用Dockerfile创建 10.3 本章小结 第11章 Web服务与应用 11.1 Apache 11.2 Nginx 11.3 Tomcat 11.4 Jetty 11.5 LAMP 11.6 CMS 11.7 持续开发与管理 11.8 本章小结 第12章 数据库应用 12.1 MySQL 12.2 MongoDB 12.3 Redis 12.4 Memcached 12.5 CouchDB 12.6 Cassandra 12.7 本章小结 第13章 分布式处理与大数据平台 13.1 RabbitMQ 13.2 Celery 13.3 Hadoop 13.4 Spark 13.5 Storm 13.6 Elasticsearch 13.7 本章小结 第14章 编程开发 14.1 C/C++ 14.2 Java 14.3 Python 14.4 JavaScript 14.5 Go 14.6 PHP 14.7 Ruby 14.8 Perl 14.9 R 14.10 Erlang 14.11 本章小结 第15章 容器与云服务 15.1 公有云容器服务 15.2 容器云服务 15.3 阿里云容器服务 15.4 时速云容器平台 15.5 本章小结 第16章 容器实战思考 16.1 Docker为什么会成功 16.2 研发人员该如何看容器 16.3 容器化开发模式 16.4 容器与生产环境 16.5 本章小结 第三部分 进阶技能 第17章 Docker核心实现技术 17.1 基本架构 17.2 命名空间 17.3 控制组 17.4 联合文件系统 17.5 Linux网络虚拟化 17.6 本章小结 第18章 配置私有仓库 18.1 安装Docker Registry 18.2 配置TLS证书 18.3 管理访问权限 18.4 配置Registry 18.5 批量管理镜像 18.6 使用通知系统 18.7 本章小结 第19章 安全防护与配置 19.1 命名空间隔离的安全 19.2 控制组资源控制的安全 19.3 内核能力机制 19.4 Docker服务端的防护 19.5 更多安全特性的使用 19.6 使用第三方检测工具 19.7 本章小结 第20章 高级网络功能 20.1 网络启动与配置参数 20.2 配置容器DNS和主机名 20.3 容器访问控制 20.4 映射容器端口到宿主主机的实现 20.5 配置docker0网桥 20.6 自定义网桥 20.7 使用OpenvSwitch网桥 20.8 创建一个点到点连接 20.9 本章小结 第21章 libnetwork插件化网络功能 21.1 容器网络模型 21.2 Docker网络相关命令 21.3 构建跨主机容器网络 21.4 本章小结 第四部分 开源项目 第22章 Etcd——高可用的键值数据库 22.1 简介 22.2 安装和使用Etcd 22.3 使用etcdctl客户端 22.4 Etcd集群管理 22.5 本章小结 第23章 Docker三剑客之Docker Machine 23.1 简介 23.2 安装Machine 23.3 使用Machine 23.4 Machine命令 23.5 本章小结 第24章 Docker三剑客之Docker Compose 24.1 简介 24.2 安装与卸载 24.3 Compose命令说明 24.4 Compose环境变量 24.5 Compose模板文件 24.6 Compose应用案例一:Web负载均衡 24.7 Compose应用案例二:大数据Spark集群 24.8 本章小结 第25章 Docker三剑客之Docker Swarm 25.1 简介 25.2 安装Swarm 25.3 使用Swarm 25.4 使用其他服务发现后端 25.5 Swarm中的调度器 25.6 Swarm中的过滤器 25.7 本章小结 第26章 Mesos——优秀的集群资源调度平台 26.1 简介 26.2 Mesos安装与使用 26.3 原理与架构 26.4 Mesos配置项解析 26.5 日志与监控 26.6 常见应用框架 26.7 本章小结 第27章 Kubernetes——生产级容器集群平台 27.1 简介 27.2 核心概念 27.3 快速体验 27.4 安装部署 27.5 重要组件 27.6 使用kubectl 27.7 网络设计 27.8 本章小结 第28章 其他相关项目 28.1 平台即服务方案 28.2 持续集成平台Drone 28.3 容器管理 28.4 编程开发 28.5 网络支持 28.6 日志处理 28.7 服务代理工具 28.8 标准与规范 28.9 其他项目 28.10 本章小结 附录 附录A 常见问题总结 附录B Docker命令查询 附录C 参考资源链接

2018-12-16

第一本Docker书(完整版)

第一本Docker书(完整版) Docker是一个开源的应用容器引擎,开发者可以利用Docker打包自己的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。本书由Docker公司前服务与支持副总裁James Turnbull编写,是Docker开发指南。 目录章节 第1 章 简介 1.1 Docker 简介 1.1.1 提供一个简单、轻量的建模方式 1.1.2 职责的逻辑分离 1.1.3 快速、高效的开发生命周期 1.1.4 鼓励使用面向服务的架构 1.2 Docker 组件 1.2.1 Docker 客户端和服务器 1.2.2 Docker 镜像 1.2.3 Registry 1.2.4 容器 1.3 我们能用Docker 做什么 1.4 Docker 与配置管理 1.5 Docker 的技术组件 1.6 本书的内容 1.7 Docker 资源 第2 章 安装Docker 2.1 安装Docker 的先决条件 2.2 在Ubuntu 中安装Docker 2.2.1 检查前提条件 2.2.2 安装Docker 2.2.3 Docker 与UFW 2.3 在Red Hat 和Red Hat 系发行版中安装Docker 2.3.1 检查前提条件 2.3.2 安装Docker 2.3.3 在Red Hat 系发行版中启动Docker 守护进程 2.4 在OS X 中安装Boot2Docker 2.4.1 在OS X 中安装Boot2Docker 2.4.2 在OS X 中启动Boot2Docker 2.4.3 测试Boot2Docker 2.5 在Windows 中安装Boot2Docker 2.5.1 在Windows 中安装Boot2Docker 2.5.2 在Windows 中启动Boot2Docker 2.5.3 测试Boot2Docker 2.6 使用本书的Boot2Docker 示例 2.7 Docker 安装脚本 2.8 二进制安装 2.9 Docker 守护进程 2.9.1 配置Docker 守护进程 2.9.2 检查Docker 守护进程是否正在运行 2.10 升级Docker 2.11 Docker 图形用户界面 2.12 小结 第3 章 Docker 入门 3.1 确保Docker 已经就绪 3.2 运行我们的第一个容器 3.3 使用第一个容器 3.4 容器命名 3.5 重新启动已经停止的容器 3.6 附着到容器上 3.7 创建守护式容器 3.8 容器内部都在干些什么 3.9 查看容器内的进程 3.10 在容器内部运行进程 3.11 停止守护式容器 3.12 自动重启容器 3.13 深入容器 3.14 删除容器 3.15 小结 第4 章 使用Docker 镜像和仓库 4.1 什么是Docker 镜像 4.2 列出镜像 4.3 拉取镜像 4.4 查找镜像 4.5 构建镜像 4.5.1 创建Docker Hub 账号 4.5.2 用Docker 的commit 命令创建镜像 4.5.3 用Dockerfile构建镜像 4.5.4 基于Dockerfile构建新镜像 4.5.5 指令失败时会怎样 4.5.6 Dockerfile 和构建缓存 4.5.7 基于构建缓存的Dockerfile模板 4.5.8 查看新镜像 4.5.9 从新镜像启动容器 4.5.10 Dockerfile 指令 4.6 将镜像推送到Docker Hub 4.7 删除镜像 4.8 运行自己的Docker Registry 4.8.1 从容器运行Registry 4.8.2 测试新Registry 4.9 其他可选Registry 服务 4.10 小结 第5 章 在测试中使用Docker 5.1 使用Docker 测试静态网站 5.1.1 Sample 网站的初始Dockerfile 5.1.2 构建Sample 网站和Nginx镜像 5.1.3 从Sample 网站和Nginx 镜像构建容器 5.1.4 修改网站 5.2 使用Docker 构建并测试Web应用程序 5.2.1 构建Sinatra 应用程序 5.2.2 创建Sinatra 容器 5.2.3 构建Redis 镜像和容器 5.2.4 连接到Redis 容器 5.2.5 连接Redis 5.2.6 让Docker 容器互连 5.2.7 使用容器连接来通信 5.3 Docker 用于持续集成 5.3.1 构建Jenkins 和Docker服务器 5.3.2 创建新的Jenkins 作业 5.3.3 运行Jenkins 作业 5.3.4 与Jenkins 作业有关的下一步 5.3.5 Jenkins 设置小结 5.4 多配置的Jenkins 5.4.1 创建多配置作业 5.4.2 测试多配置作业 5.4.3 Jenkins 多配置作业小结 5.5 其他选择 5.5.1 Drone 5.5.2 Shippable 5.6 小结 第6 章 使用Docker 构建服务 6.1 构建第一个应用 6.1.1 Jekyll 基础镜像 6.1.2 构建Jekyll 基础镜像 6.1.3 Apache 镜像 6.1.4 构建Jekylll Apache 镜像 6.1.5 启动Jekylll 网站 6.1.6 更新Jekyll 网站 6.1.7 备份Jekyll 卷 6.1.8 扩展Jekyll 示例网站 6.2 使用Docker 构建一个Java应用服务 6.2.1 WAR 文件的获取器 6.2.2 获取WAR 文件 6.2.3 Tomecat7 应用服务器 6.2.4 运行WAR 文件 6.2.5 基于Tomcat 应用服务器的构建服务 6.3 多容器的应用栈 6.3.1 Node.js 镜像 6.3.2 Redis 基础镜像 6.3.3 Redis 主镜像 6.3.4 Redis 从镜像 6.3.5 创建Redis 后端集群 6.3.6 创建Node 容器 6.3.7 捕获应用日志 6.3.8 Node 程序栈的小结 6.4 不使用SSH 管理Docker 容器 6.5 小结 第7 章 使用Fig 编配Docker 7.1 Fig 7.1.1 安装Fig 7.1.2 获取示例应用 7.1.3 fig.yml 文件 7.1.4 运行Fig 7.1.5 使用Fig 7.1.6 Fig 小结 7.2 Consul、服务发现和Docker 7.2.1 构建Consul 镜像 7.2.2 在本地测试Consul 容器 7.2.3 使用Docker 运行Consul集群 7.2.4 启动具有自启动功能的Consul 节点 7.2.5 启动其余节点 7.2.6 配合Consul,在Docker里运行一个分布式服务 7.3 其他编配工具和组件 7.3.1 Fleet 和etcd 7.3.2 Kubernetes 7.3.3 Apache Mesos 7.3.4 Helios 7.3.5 Centurion 7.3.6 Libswarm 7.4 小结 第8 章 使用Docker API 8.1 Docker API 8.2 初识Remote API 8.3 测试Docker Remote API 8.3.1 通过API 来管理Docker镜像 8.3.2 通过API 管理Docker容器 8.4 改进TProv 应用 8.5 对Docker Remote API 进行认证 8.5.1 建立证书授权中心 8.5.2 创建服务器的证书签名请求和密钥 8.5.3 配置Docker 守护进程 8.5.4 创建客户端证书和秘钥 8.5.5 配置Docker 客户端开启认证功能 8.6 小结 第9 章 获得帮助和对Docker进行改进 9.1 获得帮助 9.1.1 Docker 用户和开发邮件列表 9.1.2 IRC 上的Docker 9.1.3 GitHub 上的Docker 9.2 报告Docker 的问题 9.3 搭建构建环境 9.3.1 安装Docker 9.3.2 安装源代码和构建工具 9.3.3 检出源代码 9.3.4 贡献文档 9.3.5 构建开发环境 9.3.6 运行测试 9.3.7 在开发环境中使用Docker 9.3.8 发起pull request 9.3.9 批准合并和维护者 9.4 小结

2018-12-16

PyTorch深度学习实战

PyTorch深度学习实战 PyTorch是什么? 这是一个基于Python的科学计算包,其旨在服务两类场合: 替代numpy发挥GPU潜能 一个提供了高度灵活性和效率的深度学习实验性平台

2018-12-07

Deep Learning with PyTorch

PyTorch即 Torch 的 Python 版本。Torch 是由 Facebook 发布的深度学习框架,因支持动态定义计算图,相比于 Tensorflow 使用起来更为灵活方便,特别适合中小型机器学习项目和深度学习初学者。但因为 Torch 的开发语言是Lua,导致它在国内一直很小众。所以,在千呼万唤下,PyTorch应运而生!PyTorch 继承了 Troch 的灵活特性,又使用广为流行的 Python 作为开发语言,所以一经推出就广受欢迎!

2018-12-07

Python高效开发实战——Django、Tornado、Flask、Twisted

Python高效开发实战——Django、Tornado、Flask、Twisted一书分为三部分:第1部分是基础篇,带领初学者实践Python开发环境和掌握基本语法,同时对网络协议、Web客户端技术、数据库建模编程等网络编程基础深入浅出地进行学习;第2部分是框架篇,学习当前最流行的PythonWeb框架,即Django、Tornado、Flask和Twisted,达到对各种Python网络技术融会贯通的目的;第3部分是实战篇,分别对4种框架进行项目实践,利用其各自的特点开发适用于不同场景的网络程序。

2018-11-27

关联挖掘算法详解

关联挖掘算法主要包括Apriori和FP-Growth,两者对于不同的场景有着显著地差异性...

2018-11-20

WEKA完整中文教程

WEKA中文指南是weka很好的学习资料,包含两份完整的中文说明文档,能够帮助我们快速上手weka。

2018-11-19

python2和python3版本可用的OpenCV安装包

python2和python3版本可用的OpenCV安装包里面包含了python2的安装包和python3的安装包,经过测试成功安装,十分方便。

2018-11-16

Python计算机视觉编程(含源码)

Python计算机视觉编程(含源码)依赖Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、三维重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。另外,书中附带的练习还能让读者巩固并学会应用编程知识。

2018-11-16

linecache安装包(python2和python3兼容)

linecache模块可以读取文件并将文件内容缓存起来,方便后面多次读取。这个模块原本被设计用来读取Python模块的源代码,所以当一个文件名不在指定路径下的时候,模块会通过搜索路径(search path)来尝试读取文件

2018-11-15

百度脑图桌面版

百度脑图是一款很好的思维发散工具,能够快速帮助使用者来构建思维导图,百度脑图桌面版与web版本有相同的功能,只不过可以当做软件离线使用,非常方便

2018-11-09

PMF正交矩阵因子分解

PMF正交矩阵因子分解 主要讲解EPA PMF软件的使用,是很好的中文使用文档说明,值得学习参考,对于大气环境数据的分析很有帮助。

2018-11-09

Together_CZ的留言板

发表于 2020-01-02 最后回复 2020-02-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除