自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Together_CZ的博客

种一棵树,最好的时间是十年前,其次是现在

  • 博客(69)
  • 资源 (65)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 python使用lxml解析html获取页面内所有叶子节点的xpath路径

因为需要使用叶子节点的路径来作为特征,但是原始的lxml模块解析之后得到的却是整个页面中所有节点的xpath路径,不是我们真正想要的形式,所以就要进行相关的处理才行了,差了很多网上的博客和文档也没有找到一个是关于输出html中全部叶子节点的API接口或者函数,也可能是自己没有那份耐心,没有找到合适的资源,只好放弃了寻找,但是这并不说明没有其他的方法了,在对页面全部节点的xpath输出之后观察得到的

2017-06-30 22:53:38 6779 11

原创 Java之常用函数笔记

Java中有很多常用的小函数,跟python中很多内置的函数是一样的性质,如:sorted()、strip()、replace()等等,今天简单的总结了一下我使用最多的几个字符串、数字、日期相关的函数,如下:字符处理的函数lower():转成小写upper():转成大写initcap():将首字母转换成大写,其余字母转换成小写concat():将两个字符串连接在一起subs

2017-06-30 22:37:30 4371

转载 GitHub超详细图文攻略 - Git客户端下载安装 GitHub提交修改源码工作流程 Git分支 标签 过滤 Git版本工作流

转自:http://blog.csdn.net/vipzjyno1/article/details/22098621最近听同事说他都在使用GitHub,GitHub是程序员的社区,在里面可以学到很多书上学不到的东西,所以最近在准备入手这方面的知识去尝试学习,正好碰到这么详细完整的文章,就转载了,希望对自己和大家有帮助。GitHub操作总结 : 总结看不明白就看下面的详细

2017-06-30 17:14:46 3546

转载 Pycharm和Anaconda中如何安装package

这一篇不错的关于pycharm和Anaconda的使用的文章,但是前提是对pycharm已经有所了解或者使用过一定时间的人,Anaconda确实是一个不可多得的东西,能省去安装python的第三方包的很多的麻烦转自:http://blog.csdn.net/chaowanghn/article/details/54017331如不想被转载请联系告知删除使用Pycharm为了方便,我

2017-06-30 10:29:50 3463

原创 Java之面试基础知识学习笔记

1.标签的使用:在一个多层的嵌套循环中使用break和continue,那么只是退出或结束break和continue所在的循环,如果想指定退出某层循环,需要为此层循环设定一个标签,break和continue后可以写一个标签名,达到退出指定循环的目的;标签的定义格式是,在循环语句上面写上标签名2.数组存储多个类型相同的数据,相同类型数据的集合,使用数组前,需要先开辟空间(即数组的长度);

2017-06-29 19:46:12 3030

转载 python调用Java代码并执行--------jpype使用篇

一直想可以做到在python的环境中,执行java的程序,而不需要单独的去执行java程序之后得到的结果再用python处理,恰好今天找到了一个很不错的讲解,需要的资源里面也都有。转自:http://www.cnblogs.com/junrong624/p/5278457.html一、JPype简述1.JPype是什么?     JPype是一个能够让 pyth

2017-06-29 14:37:40 23852

原创 python实现完整的特征工程,实践论文中的分类模型和方法用于恶意页面的分类与识别

在大学的时候参与了一个学校的项目,自己做的工作就是仿冒网站中的数据清洗、特征选择、以及后续的机器学习模型的选择等相关的方面,作为一个入门级别的菜鸟新手来说,中间经历的东西恐怕只有自己懂的,做了很多事情,大学的那段时间大多时间都在实验室里面来摸索,写在这里可能也都是班门弄斧了,我是一个半路出家的progammer,说的这些话写的这些东西是希望能够帮到很多跟我一样在考研的选择上选择了跨度的同学,尽量可

2017-06-29 11:35:22 4853

转载 elasticsearch

转自:http://baike.baidu.com/link?url=HCstVnAPtXJ0brZDlLaciRXrMycEmx4pDDPTFsc5-Ku2W4LC53DItJ-7u8XfSJB8fmOop3PX6sncsFGhIFezCRCTpP5pVkUcvskingYNh7_elasticsearchElasticSearch是一个基于Lucene的搜索服务器。它提

2017-06-28 22:39:09 3063

转载 git快速入门之一:创建本地仓库并同步到远程

原文地址:http://www.yyztech.com/archives/38/Git是非常强大的版本管理工具。接下来的时间里,我就和大家絮叨絮叨git的入门:如何在本地创建一个git仓库,并把自己的本地代码同步到远程。此教程是在mac上操作的,如果您的系统是Linux,那么操作方法相同;如果您的系统是windows,那么,只需要把git的bash窗口调出来,以后的过程也都与linux相同。

2017-06-28 11:30:48 3089

原创 文本、词相似度论文阅读笔记

基于语义理解 的文本相似度算法    与 基 于统 计学 的相 似度计算 方法相 比,基于语 义理解的相似度计算方法 不需要大规模语料库的支持 ,也不需要 长时间 的训练 ,具有准确率高 的特点 ,相关 的研究 主要有使用 W ordN et 进行相 似度计算 的方法 ;目前 ,基于语义理解 的相似 度计算大 多限于词语 或句子范 围 。    文本的相似度包括:词语 与词语 、词语与

2017-06-28 08:21:16 3719

原创 如何取消恶心的chrome浏览器被360篡改劫持问题

打开浏览器最令人烦的就是好端端的的浏览器首页都被改成360浏览器的首页,很多软件安装的时候都被绑定了360的几乎全套软件,包括360安全浏览器、360安全卫士、360软件管家等等,几乎装一个软件之后要卸载一堆软件,今天查了很多如何修改或者设置chrome的主页,按照教程修改了还是不能解决问题,后来找到了一个好方法,也是很简单,在这里记录一下作为记录:右键chrome浏览器点击属性点击目

2017-06-28 07:12:12 14379

转载 如何计算文本文档词向量之间的相似度----一些概念与方法

在计算文本相似项发现方面,有以下一些可参考的方法。这些概念和方法会帮助我们开拓思路。 相似度计算方面Jaccard相似度:集合之间的Jaccard相似度等于交集大小与并集大小的比例。适合的应用包括文档文本相似度以及顾客购物习惯的相似度计算等。Shingling:k-shingle是指文档中连续出现的任意k个字符。如果将文档表示成其k-shingle集合,那么就可以基

2017-06-27 22:10:25 7338 2

转载 如何解决LSTM循环神经网络中的超长序列问题

时间 2017-06-27 15:57:39  机器之心原文  https://www.jiqizhixin.com/articles/e8d4e413-a718-49ac-ae79-c197ba8d3601主题 LSTM在 LSTM 循环神经网络面临长序列输入时,我们应该怎样应对?Jason Brownlee 给了我们 6 种解决方案。长短期记忆(LSTM)循

2017-06-27 21:55:51 12662

转载 贝叶斯深度学习——基于PyMC3的变分推理

时间 2016-06-12 10:13:38  CSDN原文  http://geek.csdn.net/news/detail/80255主题 深度学习 PyMC3原文链接: Bayesian Deep Learning 作者: Thomas Wiecki ,关注贝叶斯模型与Python 译者:刘翔宇 校对:赵屹华 责编:周建丁(zhoujd@cs

2017-06-27 21:54:00 4983

转载 Linux NFS

NFS服务器设置及mount命令挂载转自:http://blog.csdn.NET/kevinhg/article/details/5967432一、NFS服务器的设定NFS服务器的设定可以通过/etc/exports这个文件进行,设定格式如下:分享目录      主机名称或者IP(参数1,参数2)/arm2410s   10.22.22

2017-06-27 19:46:42 3498

转载 TensorFlow学习笔记

原文转载自:http://www.cnblogs.com/lienhua34/p/5998375.html关于Tensorflow的基本介绍Tensorflow是一个基于图的计算系统,其主要应用于机器学习。从Tensorflow名字的字面意思可以拆分成两部分来理解:Tensor+flow。Tensor:中文名可以称为“张量”,其本质就是任意维度的数组。一

2017-06-27 19:34:47 3540

转载 阿里巴巴的相关-----ODPS技术架构、Java Web架构、PAI机器学习平台

摘要:ODPS是分布式的海量数据处理平台,提供了丰富的数据处理功能和灵活的编程框架。本文从ODPS面临的挑战、技术架构、Hadoop迁移到ODPS、应用实践注意点等方面带领我们初步了解了ODPS的现状与前景。初识ODPSODPS是分布式的海量数据处理平台,提供了丰富的数据处理功能和灵活的编程框架,主要的功能组件有如下几个。Tunnel服务:数据进出ODPS的唯一通道

2017-06-27 19:26:36 6077

转载 25张图让你读懂神经网络架构

最近开始学习深度学习的点点滴滴,作为一个绝对的菜鸟,这里决定新开了一个分类为深度学习里面记录自己的学习记录,或者是博客转载,或者是实践笔记,不管怎样,深度学习带来的冲击是前所未有的,必须努力去学习。转自:http://blog.csdn.net/nicholas_liu2017/article/details/73694666由于新的神经网络架构无时无刻不在涌现,想要记录所有的神经

2017-06-27 19:22:46 4535 1

转载 《Attention-based LSTM for Aspect-level Sentiment Classification》阅读笔记

《Attention-based LSTM for Aspect-level Sentiment Classification》阅读笔记simple7 个月前转载请注明出处:西土城的搬砖日常原文链接:Attention-based LSTM for Aspect-level Sentiment Classification来源:EMNLP2016问题:a

2017-06-27 19:19:52 5851 5

转载 文本情感分类

电影文本情感分类Github地址Kaggle地址这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯、逻辑回归等,这里挑战之一是文本内容的向量化,因此,我们首先尝试基于TF-IDF的向量化方法,然后尝试word2vec。# -*- coding: UTF-8 -*-import pa

2017-06-27 19:14:32 3451 4

转载 文本分类的python实现-基于Xgboost算法

转自:http://blog.csdn.net/orlandowww/article/details/52967187描述训练集为评论文本,标签为 pos,neu,neg三种分类,train.csv的第一列为文本content,第二列为label。python的xgboost包安装方法,网上有很多详细的介绍参数XGBoost的作者把所有的参数分成了三类:1、

2017-06-27 18:52:23 5157

转载 中文分词的python实现----HMM、FMM

转自:http://blog.csdn.net/orlandowww/article/details/52706135隐马尔科夫模型(HMM)模型介绍HMM模型是由一个“五元组”组成:StatusSet: 状态值集合ObservedSet: 观察值集合TransProbMatrix: 转移概率矩阵EmitProbMatrix: 发射概率矩阵InitStatus: 初

2017-06-27 18:50:41 4795 3

转载 词性标注的python实现-基于平均感知机算法

转自:http://blog.csdn.net/orlandowww/article/details/52744355平均感知机算法(Averaged Perceptron)感知机算法是非常好的二分类算法,该算法求取一个分离超平面,超平面由w参数化并用来预测,对于一个样本x,感知机算法通过计算y = [w,x]预测样本的标签,最终的预测标签通过计算sign(y)来实现。算法仅在预测

2017-06-27 18:49:00 3945

转载 win10+64位 安装Theano并实现GPU加速

转自:http://blog.csdn.net/orlandowww/article/details/53313804一.安装Anaconda我使用的Anaconda是对应的python2.7 配置环境变量:用户变量中的path变量(如果没有就新建一个),在后边追加C:\Anaconda;C:\Anaconda\Scripts; 不要漏掉分号,此处根据自己的Anaconda安装

2017-06-27 18:46:15 3434

转载 基于Attention Model的Aspect level文本情感分类---用Python+Keras实现

转自:http://blog.csdn.net/orlandowww/article/details/53897634?utm_source=itdadao&utm_medium=referral1、关于aspect level的情感分析给定一个句子和句子中出现的某个aspect,aspect-level 情感分析的目标是分析出这个句子在给定aspect上的情感倾向。例如:

2017-06-27 18:41:59 4463 13

原创 python使用BeautifulSoup的prettify功能来处理HTML文档,之后使用Levenshtein编辑距离计算文档间的相似度

字符串的处理可谓是一个老生常谈的话题了,处理的方法也是有很多的积累的,利用字符串的匹配来计算文档整体之间的相似度是一个惯用的方法,但里面还有很多具体的细节需要注意,今天在使用Levenshtein距离的时候遇到了一个问题,不太知道该如何衡量了,这里先说一下做的事情:    首先使用BeautifulSoup来解析html文档,去除除了html文档非标签节点之外的内容,之后使用prettify函

2017-06-27 16:28:12 4926 2

原创 python实现字典树的插入、查找功能并基于pickle模块持久化存储字典树

字典树是一个很有意思的东西,一直想用用试试,最早接触的时候也是在学长讲的时候了解到了这么一个东西,今天想起来了就实现了一下,很简单,因为我只是需要插入和查找这么两个功能用于后续的工作,对于字典树的介绍我就不多说了因为网上的教程讲解什么也都很多,在这里作为一个探索学习的记录就贴一下具体的一些介绍和性质,均来源于网上,如下:    字典树(Trie)可以保存一些字符串->值的对应关系。基本上,它跟

2017-06-26 17:13:22 4845 1

转载 python pickle模块详解

转自:http://www.cnblogs.com/cobbliu/archive/2012/09/04/2670178.html最近因为使用python的持久化存储模型的功能,就来学习pickle模块了,发现一篇很详细的教程,保存下来作为参考python pickle模块持久性就是指保持对象,甚至在多次执行同一程序之间也保持对象。通过本文,您会对 Python对象

2017-06-26 16:55:52 3209

原创 python使用lxml库对解析后的DOM树形成的xpath计算得到平均值、中位数、方差

这篇文章的内容是接着上一篇的内容继续的,上一篇文章中简单的得到了DOM的最大深度,这里我要接着对得到的数据进行计算,分别得到均值、中位数、方差。    利用均值和中位数的目的是:利用统计的特征来衡量一下DOM树每一条路径的向中部数值的聚拢程度或者说是大多数路径的分布集中在什么取值的区域内,以便于接下来的分析工作。    利用方差的目的是:利用整体的统计特征来观察整体的路径波动性是怎么样的,

2017-06-25 16:34:39 3916

原创 python解析页面DOM树形成xpath列表,并计算DOM树的最大深度

最近对python的解析HTML的能力叹为观止,毕竟python这样强大的工具根本不缺乏解析html和xml的第三方库,我使用的是lxml当然还有其他比较好使的如:HTMLParser、BeautifulSoup等,鉴于我比较喜欢xpath这样的语法表达所以这里使用的也是lxml    要做的就是对于解析后的DOM树形成一个完整的xpath路径的列表,列表中的每一个路径都是从根节点到叶子节点的

2017-06-25 16:14:45 6375 10

转载 WINDOW10初步使用

16个Win10使用小技巧让你玩转Win10系统发表于2014年10月14日由MS酋长虽然Win10系统的许多界面和操作与Win7系统很相似,但是对于许多从WinXP直接升级到Win10系统的用户来说,还是有一定的上手难度的。那么这篇由太平洋电脑网发布的Win10小技巧汇总文章,可以让你快速上手和玩转Win10系统。Win10技巧1.窗口1/4分屏

2017-06-24 16:53:29 3093

原创 python解决sip与ptqt不兼容导致页面截图引擎无法运行问题

实验室的项目,中间用到了网页保存引擎,其中的一部分是要对给定的url的页面截图保存下来,用做后期的视觉图像方面的计算,之前一直使用的是pyqt4和sip模块配合来进行的,但是升级之后出现了无法兼容的问题,在这里查了一下相关的资料有提到说sip4.14.6这个版本的可以实现和pyqt4兼容工作,下午就实践了一下,亲测可行,使用的是虚拟机,系统是centos7这个是sip的下载地址:https:/

2017-06-22 18:15:41 4056

转载 pygame系列文章

转自小五义大牛的pygame系列文章,很不错pygame学习笔记(1)——安装及矩形、圆型画图      pygame是一个设计用来开发游戏的python模块,其实说白了和time、os、sys都是一样的东东。今天开始正式学习pygame,下载地址:www.pygame.org。下载后安装完成即可,在pygame的学习中,我使用了spe编辑器,感觉还不错。1、pyg

2017-06-22 11:12:03 4626 2

转载 域名系统

python网络编程学习笔记(4):域名系统转载请注明:@小五义 http://www.cnblogs.com/xiaowuyi一、什么是域名系统DNS 计算机域名系统 (DNS) 是由解析器以及域名服务器组成的。当我们在上网的时候,通常输入的是网址,其实这就是一个域名,而我们计算机网络上的计算机彼此之间只能用IP地址才能相互识别。再如,我们去一WEB服务器中请求一WE

2017-06-22 11:07:55 3228

转载 webpy框架

python网络编程学习笔记(10):webpy框架转载请注明:@小五义http://www.cnblogs.com/xiaowuyi    django和webpy都是python的web开发框架。Django的主要目的是简便、快速的开发数据库驱动的网站。它强调代码复用,多个组件可以很方便的以“插件”形式服务于整个框架,Django有许多功能强大的第三方插件,你甚至可以很

2017-06-22 11:07:15 4168

转载 XML生成与解析(DOM、ElementTree)

python网络编程学习笔记(8):XML生成与解析(DOM、ElementTree)转载请注明:@小五义http://www.cnblogs.com/xiaowuyixml.dom篇    DOM是Document Object Model的简称,XML 文档的高级树型表示。该模型并非只针对 Python,而是一种普通XML 模型。Python 的 DOM 包是基于

2017-06-22 11:05:40 3152

转载 HTML和XHTML解析(HTMLParser、BeautifulSoup)

python网络编程学习笔记(7):HTML和XHTML解析(HTMLParser、BeautifulSoup)转载请注明:@小五义http://www.cnblogs.com/xiaowuyi在python中能够进行html和xhtml的库有很多,如HTMLParser、sgmllib、htmllib、BeautifulSoup、mxTidy、uTidylib等,这里介绍

2017-06-22 11:04:44 3140

转载 机器学习性能改善备忘单:32个帮你做出更好预测模型的技巧和窍门

作者 |  Jason Brownlee 选文 | Aileen翻译 | 姜范波  校对 | 寒小阳机器学习最有价值(实际应用最广)的部分是预测性建模。也就是在历史数据上进行训练,在新数据上做出预测。 而预测性建模的首要问题是:如何才能得到更好的结果?这个备忘单基于本人多年的实践,以及我对顶级机器学习专家和大赛优胜者的

2017-06-21 15:45:58 2879

转载 TensorFlow深度学习,一篇文章就够了

作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者。TensorFlow深度学习框架Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow。与Caffe、Theano、Torch、MXNet等框架相比,TensorFlow在Github上Fork数和Star

2017-06-21 15:44:42 3030

转载 机器学习常见算法个人总结

转自:http://blog.csdn.net/shingle_/article/details/52653752朴素贝叶斯参考[1]事件A和B同时发生的概率为在A发生的情况下发生B或者在B发生的情况下发生AP(A∩B)=P(A)∗P(B|A)=P(B)∗P(A|B)所以有:P(A|B)=P(B|A)∗P(A)P(B)对于给出的待

2017-06-21 15:42:45 2915

MSTAR数据集.zip

原始的【MSTAR数据集】是灰度图,这里经过转化处理后的【MSTAR数据集】,已经是3通道数据集了,后面可以直接用于模型的测试分析使用。

2020-05-29

Ubuntu下gcc-7.5.0安装完整依赖.zip

升级本地gcc版本所需安装包详情如下: gcc-7.5.0.tar.gz gmp-6.1.0.tar.bz2 mpc-1.0.3.tar.gz mpfr-3.1.4.tar.bz2 isl-0.16.1.tar.bz2

2020-05-22

windows下MongoDB最新的安装包

在官网中的链接中,MongoDB很难下载下来,还得输入邮箱什么的,这里是今天20180829尝试了很多次以后成功下载下来的windows下最新的安装包,分享出来给需要的人

2018-08-29

jsonfile查看工具

本软件是功能强大,实用便捷的json文件查看工具,可以方便地查看json数据内容

2018-08-14

xgboost-whl安装包(包含32位和64位)

xgboost-whl安装包是可以很方便的在windows7和windows10下安装修改版xgboost的包文件

2018-09-07

Yolov3随机手写数字数据集

Yolov3随机手写数字数据集 包含4000张可以直接使用的数据集 以及制作好的原始待检测视频+自己训练好的模型的检测视频

2020-10-15

算法设计与分析基础高清第三版

算法设计与分析基础高清第三版是在之前版本的基础上进一步提炼和编写的算法书籍,对于算法和数据结构的理解更为深入,相信对于算法的学习会有更多的帮助

2018-09-03

hadoop-mysql-hbase环境部署套装.zip

hadoop-mysql-hbase环境部署套装包括: hadoop-2.7.1.tar.gz hbase-1.1.5-bin.tar.gz jdk-8u162-linux-x64.tar.gz mysql-connector-java-5.1.40.tar.gz mysql-server_5.7.21-1ubuntu14.04_amd64.deb-bundle.tar

2020-09-08

相关性分析项目.zip

Python数据相关性分析实践完整项目【数据+代码+结果图片】 包含完整的数据和分析代码以及可视化代码,可以直接使用的完整项目数据

2020-07-08

猫狗大战迁移学习项目.zip

猫狗大战迁移学习实战项目所需的完整模型+测试数据,可以自己直接加载进行测试使用 results:自己基于迁移学习方法训练得到的二分类模型 test:bing搜索引擎图像数据爬虫结果,针对cat和dog两类目标分别爬取了200多张图像数据 test1:随机从kaggle数据集每类的12500张数据中抽取100张图像组成的测试数据集

2020-04-03

kafka搭建套装.zip

20200326这里存放的是今日我搭建kafka过程中使用到的套装文件,可以直接下载使用的,完整的搭建实战与环境配置问题解决

2020-03-26

深度学习目标检测数据标注器.rar

深度学习目标检测数据标注器 很不错,很好用的一款数据标注工具

2020-02-19

全国火车站标注名称编码集合.zip

《全国火车站标注名称编码集合》主要是日常工作实践过程中使用汇总的名称、编码数据

2019-11-06

深度学习开发者峰会课件.zip

深度学习开发者峰会课件主要讲解当前深度学习的前沿科技成果

2019-10-31

Microsoft Visual C++ 安装包【14.0和9.0】.rar

解决Python第三方库安装过程的报错问题。 Python2.7版本报错如下: error: Microsoft Visual C++ 9.0 is required. 安装文件为: VCForPython27.msi Python3.6版本报错如下: error: Microsoft Visual C++ 14.0 is required. 安装文件为: Microsoft Visual C++ 14.0.exe

2019-09-05

pyltp安装包whl文件.rar

pyltp-0.2.1-cp35-cp35m-win_amd64.whl为Python3.5的安装版本 pyltp-0.2.1-cp36-cp36m-win_amd64.whl为Python3.6的安装版本 当使用pip安装方式安装失败的时候可以使用whl文件进行安装,亲测安装成功!

2019-08-08

中科院自动化所宗成庆-自然语言处理方法与应用.rar

中科院自动化所宗成庆-自然语言处理方法与应用 全文共108页,宗老师从自然语言处理的起源、发展、兴起、瓶颈、巅峰等节点进行了详细的说明,非常好的资料!

2019-08-08

LDA数学八卦.rar

LDA数学八卦是初学者学习LDA算法很经典很好理解的学习资料,以生活形象和严谨细致的推导讲解了LDA模型。

2019-08-08

2018知识图谱发展报告.rar

前言 1. 知识图谱的研究目标与意义 知识图谱Knowledge Graph以结构化的形式描述客观世界中概念、实体及 其关系将互联网的信息表达成更接近人类认知世界的形式提供了一种更好地 组织、管理和理解互联网海量信息的能力。知识图谱给互联网语义搜索带来了活 力同时也在智能问答中显示出强大威力已经成为互联网知识驱动的智能应用 的基础设施。知识图谱与大数据和深度学习一起成为推动互联网和人工智能发 展的核心驱动力之一。

2019-08-08

SQL SERVER查增改删,导入导出简便工具.rar

SQL SERVER查增改删,导入导出简便工具 该工具主要是讲常用的SQLServer数据操作做了一个打包和封装,能够很方便地进行使用!

2019-08-08

TensorFlow官方文档中文版.rar

TensorFlow官方文档中文版 是很全面透彻完整的Tensorflow实践学习中文学习资料,值得收藏使用!

2019-08-08

StatisticsWithJulia.pdf

Julia 正在迅速成为数据科学、统计学、机器学习、人工智能和一般科学计算领域的主要语言之一。它像 R 语言、Python 和 Matlab 一样易于使用,但由于其类型系统和即时编译,它可以更有效地执行计算。这使得它在运行时间和开发时间方面都很快。此外,还有多种多样的 Julia 包。这其中就包括数据科学家、统计学家或机器学习从业者需要的高级方法。因此,该语言具有广泛的应用范围。

2019-07-29

国家统计局2009-2018行政区划编码.zip

国家统计局2009-2018行政区划编码 包括从2009年以来至今历年来国家统计局公布出来的行政区划代码数据 历时一天爬取完成,提供给有需要的人

2019-07-16

京东大数据技术白皮书(全文120页).zip

京东大数据技术白皮书(全文120页)是总体概况对京东最新的技术架构体系的一次全方位的介绍,值得入手细读。

2019-07-16

Python数据分析与数据化运营.zip

《Python数据分析与数据化运营》从实战角度讲解如何利用Python进行数据分析、挖掘和数据化运营的著作,不仅对数据分析的关键技术和技巧进行了总结.......

2019-07-15

坦克大战tank.zip

坦克大战tank:很古老却又经典的一款小游戏,完全基于python开发,我将其打包生成exe文件,感兴趣的可以拿去玩哈。 相应的博客介绍在这里:https://blog.csdn.net/Together_CZ

2019-06-14

3万个高可用的IP代理

这里的IP代理均来源于网络数据获取,通过进一步解析处理后保存到本地json文件中,在爬虫启动的时候随机加载可用IP来构建代理 代理约有3万个

2019-04-15

推荐算法数据集

python基于Suprise模块构建推荐算法模型,实现电影、书籍等资源的推荐 文中使用到的数据集

2019-01-14

Docker技术入门与实战

简介在云计算时代,开发者将应用转移到云上已经解决了硬件管理的问题,然而软件配置和管理相关的问题依然存在。Docker的出现正好能帮助软件开发者开阔思路,尝试新的软件管理方法来解决这个问题。通过掌握Docker,开发人员便可享受先进的自动化运维理念和工具,无需运维人员介入即可顺利运行于各种运行环境。《Docker技术入门与实战》分为三大部分:Docker入门、实战案例和高级话题。第一部分(第1~8章)介绍Docker与虚拟化技术的基本概念,包括安装、镜像、容器、仓库、数据管理等;第二部分(第9~17章)通过案例介绍Docker的应用方法,包括与各种操作系统平台、SSH服务的镜像、Web服务器与应用、数据库的应用、各类编程语言的接口、私有仓库等;第三部分(第18~21章)是一些高级话题,如Docker核心技术、安全、高级网络配置、相关项目等。《Docker技术入门与实战》从基本原理开始入手,深入浅出地讲解Docker的构建与操作,内容系统全面,可帮助开发人员、运维人员快速部署应用。 第2版前言 第1版前言 第一部分 基础入门 第1章 初识容器与Docker 1.1 什么是Docker 1.2 为什么要使用Docker 1.3 Docker与虚拟化 1.4 本章小结 第2章 核心概念与安装配置 2.1 核心概念 2.2 安装Docker 2.3 配置Docker服务 2.4 推荐实践环境 2.5 本章小结 第3章 使用Docker镜像 3.1 获取镜像 3.2 查看镜像信息 3.3 搜寻镜像 3.4 删除镜像 3.5 创建镜像 3.6 存出和载入镜像 3.7 上传镜像 3.8 本章小结 第4章 操作Docker容器 4.1 创建容器 4.2 终止容器 4.3 进入容器 4.4 删除容器 4.5 导入和导出容器 4.6 本章小结 第5章 访问Docker仓库 5.1 Docker Hub公共镜像市场 5.2 时速云镜像市场 5.3 搭建本地私有仓库 5.4 本章小结 第6章 Docker数据管理 6.1 数据卷 6.2 数据卷容器 6.3 利用数据卷容器来迁移数据 6.4 本章小结 第7章 端口映射与容器互联 7.1 端口映射实现访问容器 7.2 互联机制实现便捷互访 7.3 本章小结 第8章 使用Dockerfile创建镜像 8.1 基本结构 8.2 指令说明 8.3 创建镜像 8.4 使用.dockerignore文件 8.5 最佳实践 8.6 本章小结 第二部分 实战案例 第9章 操作系统 9.1 BusyBox 9.2 Alpine 9.3 Debian/Ubuntu 9.4 CentOS/Fedora 9.5 本章小结 第10章 为镜像添加SSH服务 10.1 基于commit命令创建 10.2 使用Dockerfile创建 10.3 本章小结 第11章 Web服务与应用 11.1 Apache 11.2 Nginx 11.3 Tomcat 11.4 Jetty 11.5 LAMP 11.6 CMS 11.7 持续开发与管理 11.8 本章小结 第12章 数据库应用 12.1 MySQL 12.2 MongoDB 12.3 Redis 12.4 Memcached 12.5 CouchDB 12.6 Cassandra 12.7 本章小结 第13章 分布式处理与大数据平台 13.1 RabbitMQ 13.2 Celery 13.3 Hadoop 13.4 Spark 13.5 Storm 13.6 Elasticsearch 13.7 本章小结 第14章 编程开发 14.1 C/C++ 14.2 Java 14.3 Python 14.4 JavaScript 14.5 Go 14.6 PHP 14.7 Ruby 14.8 Perl 14.9 R 14.10 Erlang 14.11 本章小结 第15章 容器与云服务 15.1 公有云容器服务 15.2 容器云服务 15.3 阿里云容器服务 15.4 时速云容器平台 15.5 本章小结 第16章 容器实战思考 16.1 Docker为什么会成功 16.2 研发人员该如何看容器 16.3 容器化开发模式 16.4 容器与生产环境 16.5 本章小结 第三部分 进阶技能 第17章 Docker核心实现技术 17.1 基本架构 17.2 命名空间 17.3 控制组 17.4 联合文件系统 17.5 Linux网络虚拟化 17.6 本章小结 第18章 配置私有仓库 18.1 安装Docker Registry 18.2 配置TLS证书 18.3 管理访问权限 18.4 配置Registry 18.5 批量管理镜像 18.6 使用通知系统 18.7 本章小结 第19章 安全防护与配置 19.1 命名空间隔离的安全 19.2 控制组资源控制的安全 19.3 内核能力机制 19.4 Docker服务端的防护 19.5 更多安全特性的使用 19.6 使用第三方检测工具 19.7 本章小结 第20章 高级网络功能 20.1 网络启动与配置参数 20.2 配置容器DNS和主机名 20.3 容器访问控制 20.4 映射容器端口到宿主主机的实现 20.5 配置docker0网桥 20.6 自定义网桥 20.7 使用OpenvSwitch网桥 20.8 创建一个点到点连接 20.9 本章小结 第21章 libnetwork插件化网络功能 21.1 容器网络模型 21.2 Docker网络相关命令 21.3 构建跨主机容器网络 21.4 本章小结 第四部分 开源项目 第22章 Etcd——高可用的键值数据库 22.1 简介 22.2 安装和使用Etcd 22.3 使用etcdctl客户端 22.4 Etcd集群管理 22.5 本章小结 第23章 Docker三剑客之Docker Machine 23.1 简介 23.2 安装Machine 23.3 使用Machine 23.4 Machine命令 23.5 本章小结 第24章 Docker三剑客之Docker Compose 24.1 简介 24.2 安装与卸载 24.3 Compose命令说明 24.4 Compose环境变量 24.5 Compose模板文件 24.6 Compose应用案例一:Web负载均衡 24.7 Compose应用案例二:大数据Spark集群 24.8 本章小结 第25章 Docker三剑客之Docker Swarm 25.1 简介 25.2 安装Swarm 25.3 使用Swarm 25.4 使用其他服务发现后端 25.5 Swarm中的调度器 25.6 Swarm中的过滤器 25.7 本章小结 第26章 Mesos——优秀的集群资源调度平台 26.1 简介 26.2 Mesos安装与使用 26.3 原理与架构 26.4 Mesos配置项解析 26.5 日志与监控 26.6 常见应用框架 26.7 本章小结 第27章 Kubernetes——生产级容器集群平台 27.1 简介 27.2 核心概念 27.3 快速体验 27.4 安装部署 27.5 重要组件 27.6 使用kubectl 27.7 网络设计 27.8 本章小结 第28章 其他相关项目 28.1 平台即服务方案 28.2 持续集成平台Drone 28.3 容器管理 28.4 编程开发 28.5 网络支持 28.6 日志处理 28.7 服务代理工具 28.8 标准与规范 28.9 其他项目 28.10 本章小结 附录 附录A 常见问题总结 附录B Docker命令查询 附录C 参考资源链接

2018-12-16

第一本Docker书(完整版)

第一本Docker书(完整版) Docker是一个开源的应用容器引擎,开发者可以利用Docker打包自己的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。本书由Docker公司前服务与支持副总裁James Turnbull编写,是Docker开发指南。 目录章节 第1 章 简介 1.1 Docker 简介 1.1.1 提供一个简单、轻量的建模方式 1.1.2 职责的逻辑分离 1.1.3 快速、高效的开发生命周期 1.1.4 鼓励使用面向服务的架构 1.2 Docker 组件 1.2.1 Docker 客户端和服务器 1.2.2 Docker 镜像 1.2.3 Registry 1.2.4 容器 1.3 我们能用Docker 做什么 1.4 Docker 与配置管理 1.5 Docker 的技术组件 1.6 本书的内容 1.7 Docker 资源 第2 章 安装Docker 2.1 安装Docker 的先决条件 2.2 在Ubuntu 中安装Docker 2.2.1 检查前提条件 2.2.2 安装Docker 2.2.3 Docker 与UFW 2.3 在Red Hat 和Red Hat 系发行版中安装Docker 2.3.1 检查前提条件 2.3.2 安装Docker 2.3.3 在Red Hat 系发行版中启动Docker 守护进程 2.4 在OS X 中安装Boot2Docker 2.4.1 在OS X 中安装Boot2Docker 2.4.2 在OS X 中启动Boot2Docker 2.4.3 测试Boot2Docker 2.5 在Windows 中安装Boot2Docker 2.5.1 在Windows 中安装Boot2Docker 2.5.2 在Windows 中启动Boot2Docker 2.5.3 测试Boot2Docker 2.6 使用本书的Boot2Docker 示例 2.7 Docker 安装脚本 2.8 二进制安装 2.9 Docker 守护进程 2.9.1 配置Docker 守护进程 2.9.2 检查Docker 守护进程是否正在运行 2.10 升级Docker 2.11 Docker 图形用户界面 2.12 小结 第3 章 Docker 入门 3.1 确保Docker 已经就绪 3.2 运行我们的第一个容器 3.3 使用第一个容器 3.4 容器命名 3.5 重新启动已经停止的容器 3.6 附着到容器上 3.7 创建守护式容器 3.8 容器内部都在干些什么 3.9 查看容器内的进程 3.10 在容器内部运行进程 3.11 停止守护式容器 3.12 自动重启容器 3.13 深入容器 3.14 删除容器 3.15 小结 第4 章 使用Docker 镜像和仓库 4.1 什么是Docker 镜像 4.2 列出镜像 4.3 拉取镜像 4.4 查找镜像 4.5 构建镜像 4.5.1 创建Docker Hub 账号 4.5.2 用Docker 的commit 命令创建镜像 4.5.3 用Dockerfile构建镜像 4.5.4 基于Dockerfile构建新镜像 4.5.5 指令失败时会怎样 4.5.6 Dockerfile 和构建缓存 4.5.7 基于构建缓存的Dockerfile模板 4.5.8 查看新镜像 4.5.9 从新镜像启动容器 4.5.10 Dockerfile 指令 4.6 将镜像推送到Docker Hub 4.7 删除镜像 4.8 运行自己的Docker Registry 4.8.1 从容器运行Registry 4.8.2 测试新Registry 4.9 其他可选Registry 服务 4.10 小结 第5 章 在测试中使用Docker 5.1 使用Docker 测试静态网站 5.1.1 Sample 网站的初始Dockerfile 5.1.2 构建Sample 网站和Nginx镜像 5.1.3 从Sample 网站和Nginx 镜像构建容器 5.1.4 修改网站 5.2 使用Docker 构建并测试Web应用程序 5.2.1 构建Sinatra 应用程序 5.2.2 创建Sinatra 容器 5.2.3 构建Redis 镜像和容器 5.2.4 连接到Redis 容器 5.2.5 连接Redis 5.2.6 让Docker 容器互连 5.2.7 使用容器连接来通信 5.3 Docker 用于持续集成 5.3.1 构建Jenkins 和Docker服务器 5.3.2 创建新的Jenkins 作业 5.3.3 运行Jenkins 作业 5.3.4 与Jenkins 作业有关的下一步 5.3.5 Jenkins 设置小结 5.4 多配置的Jenkins 5.4.1 创建多配置作业 5.4.2 测试多配置作业 5.4.3 Jenkins 多配置作业小结 5.5 其他选择 5.5.1 Drone 5.5.2 Shippable 5.6 小结 第6 章 使用Docker 构建服务 6.1 构建第一个应用 6.1.1 Jekyll 基础镜像 6.1.2 构建Jekyll 基础镜像 6.1.3 Apache 镜像 6.1.4 构建Jekylll Apache 镜像 6.1.5 启动Jekylll 网站 6.1.6 更新Jekyll 网站 6.1.7 备份Jekyll 卷 6.1.8 扩展Jekyll 示例网站 6.2 使用Docker 构建一个Java应用服务 6.2.1 WAR 文件的获取器 6.2.2 获取WAR 文件 6.2.3 Tomecat7 应用服务器 6.2.4 运行WAR 文件 6.2.5 基于Tomcat 应用服务器的构建服务 6.3 多容器的应用栈 6.3.1 Node.js 镜像 6.3.2 Redis 基础镜像 6.3.3 Redis 主镜像 6.3.4 Redis 从镜像 6.3.5 创建Redis 后端集群 6.3.6 创建Node 容器 6.3.7 捕获应用日志 6.3.8 Node 程序栈的小结 6.4 不使用SSH 管理Docker 容器 6.5 小结 第7 章 使用Fig 编配Docker 7.1 Fig 7.1.1 安装Fig 7.1.2 获取示例应用 7.1.3 fig.yml 文件 7.1.4 运行Fig 7.1.5 使用Fig 7.1.6 Fig 小结 7.2 Consul、服务发现和Docker 7.2.1 构建Consul 镜像 7.2.2 在本地测试Consul 容器 7.2.3 使用Docker 运行Consul集群 7.2.4 启动具有自启动功能的Consul 节点 7.2.5 启动其余节点 7.2.6 配合Consul,在Docker里运行一个分布式服务 7.3 其他编配工具和组件 7.3.1 Fleet 和etcd 7.3.2 Kubernetes 7.3.3 Apache Mesos 7.3.4 Helios 7.3.5 Centurion 7.3.6 Libswarm 7.4 小结 第8 章 使用Docker API 8.1 Docker API 8.2 初识Remote API 8.3 测试Docker Remote API 8.3.1 通过API 来管理Docker镜像 8.3.2 通过API 管理Docker容器 8.4 改进TProv 应用 8.5 对Docker Remote API 进行认证 8.5.1 建立证书授权中心 8.5.2 创建服务器的证书签名请求和密钥 8.5.3 配置Docker 守护进程 8.5.4 创建客户端证书和秘钥 8.5.5 配置Docker 客户端开启认证功能 8.6 小结 第9 章 获得帮助和对Docker进行改进 9.1 获得帮助 9.1.1 Docker 用户和开发邮件列表 9.1.2 IRC 上的Docker 9.1.3 GitHub 上的Docker 9.2 报告Docker 的问题 9.3 搭建构建环境 9.3.1 安装Docker 9.3.2 安装源代码和构建工具 9.3.3 检出源代码 9.3.4 贡献文档 9.3.5 构建开发环境 9.3.6 运行测试 9.3.7 在开发环境中使用Docker 9.3.8 发起pull request 9.3.9 批准合并和维护者 9.4 小结

2018-12-16

PyTorch深度学习实战

PyTorch深度学习实战 PyTorch是什么? 这是一个基于Python的科学计算包,其旨在服务两类场合: 替代numpy发挥GPU潜能 一个提供了高度灵活性和效率的深度学习实验性平台

2018-12-07

Deep Learning with PyTorch

PyTorch即 Torch 的 Python 版本。Torch 是由 Facebook 发布的深度学习框架,因支持动态定义计算图,相比于 Tensorflow 使用起来更为灵活方便,特别适合中小型机器学习项目和深度学习初学者。但因为 Torch 的开发语言是Lua,导致它在国内一直很小众。所以,在千呼万唤下,PyTorch应运而生!PyTorch 继承了 Troch 的灵活特性,又使用广为流行的 Python 作为开发语言,所以一经推出就广受欢迎!

2018-12-07

Python高效开发实战——Django、Tornado、Flask、Twisted

Python高效开发实战——Django、Tornado、Flask、Twisted一书分为三部分:第1部分是基础篇,带领初学者实践Python开发环境和掌握基本语法,同时对网络协议、Web客户端技术、数据库建模编程等网络编程基础深入浅出地进行学习;第2部分是框架篇,学习当前最流行的PythonWeb框架,即Django、Tornado、Flask和Twisted,达到对各种Python网络技术融会贯通的目的;第3部分是实战篇,分别对4种框架进行项目实践,利用其各自的特点开发适用于不同场景的网络程序。

2018-11-27

关联挖掘算法详解

关联挖掘算法主要包括Apriori和FP-Growth,两者对于不同的场景有着显著地差异性...

2018-11-20

WEKA完整中文教程

WEKA中文指南是weka很好的学习资料,包含两份完整的中文说明文档,能够帮助我们快速上手weka。

2018-11-19

python2和python3版本可用的OpenCV安装包

python2和python3版本可用的OpenCV安装包里面包含了python2的安装包和python3的安装包,经过测试成功安装,十分方便。

2018-11-16

Python计算机视觉编程(含源码)

Python计算机视觉编程(含源码)依赖Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、三维重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。另外,书中附带的练习还能让读者巩固并学会应用编程知识。

2018-11-16

linecache安装包(python2和python3兼容)

linecache模块可以读取文件并将文件内容缓存起来,方便后面多次读取。这个模块原本被设计用来读取Python模块的源代码,所以当一个文件名不在指定路径下的时候,模块会通过搜索路径(search path)来尝试读取文件

2018-11-15

百度脑图桌面版

百度脑图是一款很好的思维发散工具,能够快速帮助使用者来构建思维导图,百度脑图桌面版与web版本有相同的功能,只不过可以当做软件离线使用,非常方便

2018-11-09

PMF正交矩阵因子分解

PMF正交矩阵因子分解 主要讲解EPA PMF软件的使用,是很好的中文使用文档说明,值得学习参考,对于大气环境数据的分析很有帮助。

2018-11-09

Together_CZ的留言板

发表于 2020-01-02 最后回复 2020-02-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除