自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Together_CZ的博客

种一棵树,最好的时间是十年前,其次是现在

  • 博客(110)
  • 资源 (65)
  • 论坛 (1)
  • 问答 (1)
  • 收藏
  • 关注

转载 Differential Privacy差分隐私

转自:http://blog.csdn.net/charwing/article/details/27053895Differential Privacy presentation materials- A hospital has a database of patient records, eachrecord containing a binary val

2017-04-29 19:51:00 4066

转载 正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼N(μ,σ2),则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度

2017-04-29 17:42:29 3867

转载 30分钟LINQ教程

转自:http://www.cnblogs.com/liulun/archive/2013/02/26/2909985.html在说LINQ之前必须先说说几个重要的C#语言特性一:与LINQ有关的语言特性  1.隐式类型    (1)源起      在隐式类型出现之前,      我们在声明一个变量的时候,      总是要为一个变量指定他的

2017-04-29 10:33:16 2998

转载 [Python] 学习资料汇总

转自:http://www.cnblogs.com/maybe2030/p/4552833.html[Python] 学习资料汇总 Python是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大且完善的通用型语言,已经有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。Pytho

2017-04-27 21:47:19 6916 2

转载 [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

转自:[Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型阅读目录1. 词向量2.Distributed representation词向量表示3.词向量模型4.word2vec算法思想5.doc2vec算法思想6.参考内容  深度学习掀开了机器学习的新篇章,目前深度学习应用于图像

2017-04-27 21:38:05 3911

转载 机器学习常用评价指标总结

在使用机器学习算法的过程中,针对不同场景需要不同的评价指标,在这里对常用的指标进行一个简单的汇总。一、分类1. 精确率与召回率精确率与召回率多用于二分类问题。精确率(Precision)指的是模型判为正的所有样本中有多少是真正的正样本;召回率(Recall)指的是所有正样本有多少被模型判为正样本,即召回。设模型输出的正样本集合为$A$,真正的正样本集合为$B$,则有:

2017-04-27 21:36:06 4515

转载 simhash与minhash

simhash与重复信息识别来源:http://grunt1223.iteye.com/blog/964564在工作学习中,我往往感叹数学奇迹般的解决一些貌似不可能完成的任务,并且十分希望将这种喜悦分享给大家,就好比说:“老婆,出来看上帝”…… 随着信息爆炸时代的来临,互联网上充斥着着大量的近重复信息,有效地识别它们是一个很有意义的课题。例如,对于搜索引擎的

2017-04-27 21:28:38 3383

转载 machine learning之PCA、ICA

在高维数据处理中,为了简化计算量以及储存空间,需要对这些高维数据进行一定程度上的降维,并尽量保证数据的不失真。PCA和ICA是两种常用的降维方法。PCA:principal component analysis ,主成分分析ICA :Independent component analysis,独立成分分析PCA,ICA都是统计理论当中的概念,在机器学习当中应用

2017-04-27 21:24:56 3833

转载 相似文档查找算法之 simHash

转自:介绍一个基于simhash作海量文章排重的库:simhashpy摘要: 海量文章排重的具体实践方法,主要是介绍在工程当中如何使用。基于simhash的海量文章排重的实践简单介绍simhash是一种能计算文档相似度的hash算法。通过simhash能将一篇文章映射成64bit,再比较两篇文章的64bit的海明距离,就能知道文章的相似程序。若两篇文章的海明距离

2017-04-27 17:02:31 7573

转载 simHash 简介以及 java 实现

转自:simHash 简介以及 java 实现传统的 hash 算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概 率 下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义 上来 说,要设计一个 hash 算法,对

2017-04-27 16:59:39 3149

转载 Simhash算法原理和网页查重应用

传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相

2017-04-27 16:58:40 3028

转载 浅谈simhash及其python实现

转自:浅谈simhash及其python实现作者原创,转载请注明出处。一直想写个总结来回顾simhash,一直没抽出时间,现在还是好好写写总结一下。作者随笔,废话有点多,不喜勿喷,欢迎指教。谷歌每天从网上抓取海量的信息,怎么样区分重复的呢,据说就采用了simhash算法,当然肯定也不仅仅就只采用它,不过至少可以说明其性能。预备知识:我们知道,在文本去重的

2017-04-27 16:36:05 4625

转载 机器学习中的相似性度量

转自:机器学习中的相似性度量    在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。  本文的目的就是对常用的相似性度量作一个总结。本文目录:1. 欧氏距离2. 曼哈顿距离

2017-04-27 16:27:37 3013

转载 三种基于感知哈希算法的相似图像检索技术

三种基于感知哈希算法的相似图像检索技术时间 2014-09-26 11:32:46  CSDN博客原文  http://blog.csdn.net/xaut_zjb/article/details/39578063主题 算法 哈希表大家都用google或baidu的识图功能,上面就是我搜索一幅图片的结果,该引擎实现相似图片搜素的关键技术叫做“感知哈希算法”(Pe

2017-04-27 16:24:19 4628

转载 算法——K均值聚类算法(Java实现)

转自:http://blog.csdn.net/cyxlzzs/article/details/7416491算法——K均值聚类算法(Java实现)分类:javaalgorithm (19921)  (2)1、用途:聚类算法通常用于数据挖掘,将相似的数组进行聚簇2、原理:网上比较多,可以百度或者google一下3、实现:Java代码如下

2017-04-27 15:48:10 3713

转载 汉密尔顿路径(哈密顿路径)解析

转自:汉密尔顿路径(哈密顿路径)解析汉密尔顿路径(哈密顿路径)哈密顿路径也称作哈密顿链,指在一个图中沿边访问每个顶点恰好一次的路径。寻找这样的一个路径是一个典型的NP-完全(NP-complete)问题。后来人们也证明了,找一条哈密顿路的近似比为常数的近似算法也是NP完全的.算法思路(寻找图中所有的哈密顿路)首先用一个邻接矩阵存储图将每一个顶点作为起点,查找哈密顿路查找哈密

2017-04-26 22:45:49 6612

转载 SVM综述系列

(一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Ac

2017-04-24 20:38:42 4046

转载 机器学习资源

机器学习,讨论的是如何让计算机程序进行学习。因为现实世界中有很多问题,不能通过直接编程解决,如手写数字识别,自动驾驶等。人们希望计算机程序也能像人一样,从已有的经验中进行学习,来提高它的性能。     那什么是机器学习了?首先来看什么是学习。学习的一般说法是,在经验的作用下,行为的改变。学习有一个要素,那就是经验,学习的结果是行为的改变。如果人经过学习后,并没有改变其行为,则不能称其学习了。机

2017-04-24 20:35:38 3113

转载 Hash综述

MinHash算法1.概述    跟SimHash一样,MinHash也是LSH的一种,可以用来快速估算两个集合的相似度。MinHash由Andrei Broder提出,最初用于在搜索引擎中检测重复网页。它也可以应用于大规模聚类问题。2.Jaccard index    在介绍MinHash之前,我们先介绍下Jaccard index。

2017-04-24 20:28:40 3917

转载 Detecting Near-Duplicates for Web Crawling - simhash与重复信息识别

随着信息爆炸时代的来临,互联网上充斥着着大量的近重复信息,有效地识别它们是一个很有意义的课题。例如,对于搜索引擎的爬虫系统来说,收录重复的网页是毫无意义的,只会造成存储和计算资源的浪费;同时,展示重复的信息对于用户来说也并不是最好的体验。造成网页近重复的可能原因主要包括: 镜像网站内容复制嵌入广告计数改变少量修改一个简化的爬虫系统架构如下图所示: 事实上,传

2017-04-24 20:02:56 3404

转载 Cartesian k-means论文理解

转自:Cartesian k-means论文理解1.普通k-means给定n个p维数据点,D≡{Xj}nj=1,普通Kmeans算法将它们分成k个类别,每个类别有个类中心。目标函数是:  其中矩阵C的第i列是ci,分成m个类别,那么矩阵就有m列,b∈{0,1}k,且b 的模长为1,即b只有一个分量值为1,其余分量值为0。K-means算法之所以很难,其中一个

2017-04-23 11:01:56 3343

转载 数学之美系列好文,强烈推荐

转自:http://www.cnblogs.com/KevinYang/archive/2009/02/01/1381783.html数学之美系列一 -- 统计语言模型2006年4月3日 上午 08:15:00发表者: 吴军, Google 研究员 前言 也 许大家不相信,数学是解决信息检索和自然语言处理的最好工具。它能非常清晰地描述这些领域的实际问

2017-04-22 16:52:29 14504 2

转载 探索推荐引擎内部的秘密系列

最近要用到协同过滤的算法来解决工作中的问题,先学习,以后再把自己的收获总结下来。转自:http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/“探索推荐引擎内部的秘密”系列将带领读者从浅入深的学习探索推荐引擎的机制,实现方法,其中还涉及一些基本的优化方法,例如聚类和分类的应用。同时在理论讲解的基础上,还会结

2017-04-21 21:59:18 3344

转载 谱聚类

接收同事的工作,有个任务用kmeans解决的不好,有时间试试这个。    如果说 K-means 和 GMM 这些聚类的方法是古代流行的算法的话,那么这次要讲的 Spectral Clustering 就可以算是现代流行的算法了,中文通常称为“谱聚类”。由于使用的矩阵的细微差别,谱聚类实际上可以说是一“类”算法。Spectral Clustering 和传统的聚类方法(例如 K

2017-04-21 21:57:17 2999

转载 计算机视觉SIFT算法详解

非图像处理领域,只是好奇,想了解下。转自:http://blog.csdn.net/zddblog/article/details/7521424尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Funzdd  zddmail@gmail.com or (zddhub@gmail.co

2017-04-21 21:54:08 5231

转载 强大的矩阵奇异值分解(SVD)及其应用

转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html前言:    上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留

2017-04-21 21:53:11 3000

转载 国外程序员整理的机器学习资源大全

原文链接: awesome-machine-learning   翻译: 伯乐在线 - toolate译文链接: http://blog.jobbole.com/73806/本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。C++计算机视觉CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库OpenCV—它提供C++, C, Py

2017-04-21 21:52:38 3907

转载 机器学习的最佳入门学习资源

本文由 伯乐在线 - programmer_lin 翻译自 Jason Brownlee。欢迎加入技术翻译小组。转载请参见文章末尾处的要求。这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。文章里到底写什么、不写什么,这个问题真的让我很烦恼。我必须把自己当做

2017-04-21 21:48:28 2871

转载 最大熵模型介绍及实现

转自:http://www.cnblogs.com/hexinuaa/p/3353479.htmlhttp://blog.csdn.NET/hexinuaa/article/details/24711675Overview统计建模方法是用来modeling随机过程行为的。在构造模型时,通常供我们使用的是随机过程的采样,也就是训练数据。这些样本所具有的知识(较少),事实上,不

2017-04-21 21:46:29 3164

原创 字典序的理解以及python实现

字典序,自己之前并没有很多的了解,最近在做题的时候发现出现的还是挺频繁的,索性今天找出来好好研究学习一下,在这里主要是根据网上的一篇博文来学习的,感觉讲的很容易理解这里就不多说了需要的话可以去看看。    对于数字1、2、3......n的排列,不同排列的先后关系是从左到右逐个比较对应的数字的先后来决定的。例如对于5个数字的排列 12354和12345,排列12345在前,排列12354在后。

2017-04-19 16:15:23 7053 2

翻译 python time、datetime模块学习使用

在做题的时候遇上几个题目需要将Timestamp、Datetime、UTC几个时间之间做转换,正好之前了解到python提供了极为便捷强大的时间处理模块,掌握好了用起来就会很方便,在这里花一点时间专门在网上搜集的资料,整理一下,内容来源于网上,放在这里,最主要是作为学习的记录,方便以后用到的时候不需要费力再去耗费时间去查询了,也希望能给需要的朋友提供方便,给出来了参考的来源,如果需要还可以直接去源

2017-04-19 09:51:49 5141

原创 python之collections模块Counter类使用学习

今天在实验室看了一下午的朴素贝叶斯的基本理论,不得不说之前的我对很多理论的学习态度是不求甚解,这就导致了今天下午看深入的时候很是费劲,无奈中途只好停歇了,然后拿了一个具体的实例来学习这种随处可见的贝叶斯思想,不得不说,现实生活中只要是牵涉到概率的地方就都可以使用到Bayes理论来解决事情,今天学习的实例是朴素贝叶斯纠正错误拼写问题 ,当然这篇文章的目的不是说为了讲解这个理论,在前面的博客里转载了那

2017-04-18 22:36:44 9026

转载 数学之美番外篇:平凡而又神奇的贝叶斯方法

转自:数学之美番外篇:平凡而又神奇的贝叶斯方法概率论只不过是把常识用数学公式表达了出来。——拉普拉斯目录0. 前言 1. 历史     1.1 一个例子:自然语言的二义性     1.2 贝叶斯公式 2. 拼写纠正 3. 模型比较与贝叶斯奥卡姆剃刀     3.1 再访拼写纠正     3.

2017-04-18 11:20:31 3078

转载 浅谈MySQL索引背后的数据结构及算法

转自 :            浅谈MySQL索引背后的数据结构及算法 浏览:7828次  出处信息摘要本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于B

2017-04-18 11:16:40 2942

转载 算法虐我千百遍,我待算法如初恋

转自:算法虐我千百遍,我待算法如初恋算法虐我千百遍,我待算法如初恋。学习方法 1) 把所有经典算法写一遍 2) 看算法源码 3) 加入算法学习社区,相互鼓励学习 4) 看经典书籍基本数据结构和算法 这些算法全部自己敲一遍:二叉树 二叉树 二叉查找树 Trie树(前缀树) 后缀树 最优二叉树(赫夫曼树) 伸展树(splay

2017-04-18 11:11:08 3457

转载 大公司笔试面试有哪些经典算法题目?

首先,强烈建议采用“题海战术”。我当然不会告诉题主,今年面了数十家公司,90%的题目是原题(没办法,就那几个知识点,能有什么新题) 题库在哪里呢?按照循序渐进的原则,一一介绍:cc150,全名cracking the coding interview - 150 Programming Questions and Solutions。经典中的经典,曾有人别的啥都不做,刷这本书三

2017-04-18 11:10:19 3794

转载 matplotlib作图

转自;http://blog.csdn.net/pipisorry/article/details/37742423matplotlib介绍        matplotlib 是Python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。它的文档相当完备,并且Gallery页面 中

2017-04-17 18:25:15 3789

转载 机器学习:金融领域的岗位需求

转自:机器学习:金融领域的岗位需求1.蚂蚁金服招聘资深推荐算法工程师岗位描述:1、结合业务需要提出合适的算法解决方案,推动方案在业务系统中实现,构建实时化高并发系统,尤其是基于大规模用户行为,建立推荐系统。算法包括但不限于机器学习、推荐系统、自然语言处理、文本挖掘等;2、从数据中发现现有系统和算法的不足,提出改进的算法并推动实现;3、追踪算法前沿技术,结合业务特点,探索

2017-04-17 14:43:12 5376

转载 机器学习经典图

转自:机器学习经典图一下是电脑中存储的机器学习经典图,简单明了地解释了一些基本问题。图片收集自网络,仅供学习和交流。1. 为什么低训练误差并不总是一件好的事情呢?答:因为模型的复杂性2. 低度拟合或者过度拟合的例子3. 为什么贝叶斯推理可以具体化奥卡姆剃刀原理答:首先知道奥卡姆剃刀原理:切勿浪费较多东西去做,用较少

2017-04-17 14:40:12 3060

转载 机器学习十大算法的核心思想、工作原理、适用 情况及优缺点

转自:机器学习十大算法的核心思想、工作原理、适用 情况及优缺点机器学习十大算法的每个算法的核心思想、工作原理、适用 情况及优缺点一、C4.5 算法:ID3 算法是以信息论为基础,以信息熵和信息增益度为衡量标准,从而实现对数据的归纳分类。ID3 算法计算每个属性的信息增益,并选取具有最高增益的属性作为给定的测试属性。C4.5 算法核心思想是ID3 算法,是ID

2017-04-17 14:38:19 3686

MSTAR数据集.zip

原始的【MSTAR数据集】是灰度图,这里经过转化处理后的【MSTAR数据集】,已经是3通道数据集了,后面可以直接用于模型的测试分析使用。

2020-05-29

Ubuntu下gcc-7.5.0安装完整依赖.zip

升级本地gcc版本所需安装包详情如下: gcc-7.5.0.tar.gz gmp-6.1.0.tar.bz2 mpc-1.0.3.tar.gz mpfr-3.1.4.tar.bz2 isl-0.16.1.tar.bz2

2020-05-22

windows下MongoDB最新的安装包

在官网中的链接中,MongoDB很难下载下来,还得输入邮箱什么的,这里是今天20180829尝试了很多次以后成功下载下来的windows下最新的安装包,分享出来给需要的人

2018-08-29

jsonfile查看工具

本软件是功能强大,实用便捷的json文件查看工具,可以方便地查看json数据内容

2018-08-14

xgboost-whl安装包(包含32位和64位)

xgboost-whl安装包是可以很方便的在windows7和windows10下安装修改版xgboost的包文件

2018-09-07

Yolov3随机手写数字数据集

Yolov3随机手写数字数据集 包含4000张可以直接使用的数据集 以及制作好的原始待检测视频+自己训练好的模型的检测视频

2020-10-15

算法设计与分析基础高清第三版

算法设计与分析基础高清第三版是在之前版本的基础上进一步提炼和编写的算法书籍,对于算法和数据结构的理解更为深入,相信对于算法的学习会有更多的帮助

2018-09-03

hadoop-mysql-hbase环境部署套装.zip

hadoop-mysql-hbase环境部署套装包括: hadoop-2.7.1.tar.gz hbase-1.1.5-bin.tar.gz jdk-8u162-linux-x64.tar.gz mysql-connector-java-5.1.40.tar.gz mysql-server_5.7.21-1ubuntu14.04_amd64.deb-bundle.tar

2020-09-08

相关性分析项目.zip

Python数据相关性分析实践完整项目【数据+代码+结果图片】 包含完整的数据和分析代码以及可视化代码,可以直接使用的完整项目数据

2020-07-08

猫狗大战迁移学习项目.zip

猫狗大战迁移学习实战项目所需的完整模型+测试数据,可以自己直接加载进行测试使用 results:自己基于迁移学习方法训练得到的二分类模型 test:bing搜索引擎图像数据爬虫结果,针对cat和dog两类目标分别爬取了200多张图像数据 test1:随机从kaggle数据集每类的12500张数据中抽取100张图像组成的测试数据集

2020-04-03

kafka搭建套装.zip

20200326这里存放的是今日我搭建kafka过程中使用到的套装文件,可以直接下载使用的,完整的搭建实战与环境配置问题解决

2020-03-26

深度学习目标检测数据标注器.rar

深度学习目标检测数据标注器 很不错,很好用的一款数据标注工具

2020-02-19

全国火车站标注名称编码集合.zip

《全国火车站标注名称编码集合》主要是日常工作实践过程中使用汇总的名称、编码数据

2019-11-06

深度学习开发者峰会课件.zip

深度学习开发者峰会课件主要讲解当前深度学习的前沿科技成果

2019-10-31

Microsoft Visual C++ 安装包【14.0和9.0】.rar

解决Python第三方库安装过程的报错问题。 Python2.7版本报错如下: error: Microsoft Visual C++ 9.0 is required. 安装文件为: VCForPython27.msi Python3.6版本报错如下: error: Microsoft Visual C++ 14.0 is required. 安装文件为: Microsoft Visual C++ 14.0.exe

2019-09-05

pyltp安装包whl文件.rar

pyltp-0.2.1-cp35-cp35m-win_amd64.whl为Python3.5的安装版本 pyltp-0.2.1-cp36-cp36m-win_amd64.whl为Python3.6的安装版本 当使用pip安装方式安装失败的时候可以使用whl文件进行安装,亲测安装成功!

2019-08-08

中科院自动化所宗成庆-自然语言处理方法与应用.rar

中科院自动化所宗成庆-自然语言处理方法与应用 全文共108页,宗老师从自然语言处理的起源、发展、兴起、瓶颈、巅峰等节点进行了详细的说明,非常好的资料!

2019-08-08

LDA数学八卦.rar

LDA数学八卦是初学者学习LDA算法很经典很好理解的学习资料,以生活形象和严谨细致的推导讲解了LDA模型。

2019-08-08

2018知识图谱发展报告.rar

前言 1. 知识图谱的研究目标与意义 知识图谱Knowledge Graph以结构化的形式描述客观世界中概念、实体及 其关系将互联网的信息表达成更接近人类认知世界的形式提供了一种更好地 组织、管理和理解互联网海量信息的能力。知识图谱给互联网语义搜索带来了活 力同时也在智能问答中显示出强大威力已经成为互联网知识驱动的智能应用 的基础设施。知识图谱与大数据和深度学习一起成为推动互联网和人工智能发 展的核心驱动力之一。

2019-08-08

SQL SERVER查增改删,导入导出简便工具.rar

SQL SERVER查增改删,导入导出简便工具 该工具主要是讲常用的SQLServer数据操作做了一个打包和封装,能够很方便地进行使用!

2019-08-08

TensorFlow官方文档中文版.rar

TensorFlow官方文档中文版 是很全面透彻完整的Tensorflow实践学习中文学习资料,值得收藏使用!

2019-08-08

StatisticsWithJulia.pdf

Julia 正在迅速成为数据科学、统计学、机器学习、人工智能和一般科学计算领域的主要语言之一。它像 R 语言、Python 和 Matlab 一样易于使用,但由于其类型系统和即时编译,它可以更有效地执行计算。这使得它在运行时间和开发时间方面都很快。此外,还有多种多样的 Julia 包。这其中就包括数据科学家、统计学家或机器学习从业者需要的高级方法。因此,该语言具有广泛的应用范围。

2019-07-29

国家统计局2009-2018行政区划编码.zip

国家统计局2009-2018行政区划编码 包括从2009年以来至今历年来国家统计局公布出来的行政区划代码数据 历时一天爬取完成,提供给有需要的人

2019-07-16

京东大数据技术白皮书(全文120页).zip

京东大数据技术白皮书(全文120页)是总体概况对京东最新的技术架构体系的一次全方位的介绍,值得入手细读。

2019-07-16

Python数据分析与数据化运营.zip

《Python数据分析与数据化运营》从实战角度讲解如何利用Python进行数据分析、挖掘和数据化运营的著作,不仅对数据分析的关键技术和技巧进行了总结.......

2019-07-15

坦克大战tank.zip

坦克大战tank:很古老却又经典的一款小游戏,完全基于python开发,我将其打包生成exe文件,感兴趣的可以拿去玩哈。 相应的博客介绍在这里:https://blog.csdn.net/Together_CZ

2019-06-14

3万个高可用的IP代理

这里的IP代理均来源于网络数据获取,通过进一步解析处理后保存到本地json文件中,在爬虫启动的时候随机加载可用IP来构建代理 代理约有3万个

2019-04-15

推荐算法数据集

python基于Suprise模块构建推荐算法模型,实现电影、书籍等资源的推荐 文中使用到的数据集

2019-01-14

Docker技术入门与实战

简介在云计算时代,开发者将应用转移到云上已经解决了硬件管理的问题,然而软件配置和管理相关的问题依然存在。Docker的出现正好能帮助软件开发者开阔思路,尝试新的软件管理方法来解决这个问题。通过掌握Docker,开发人员便可享受先进的自动化运维理念和工具,无需运维人员介入即可顺利运行于各种运行环境。《Docker技术入门与实战》分为三大部分:Docker入门、实战案例和高级话题。第一部分(第1~8章)介绍Docker与虚拟化技术的基本概念,包括安装、镜像、容器、仓库、数据管理等;第二部分(第9~17章)通过案例介绍Docker的应用方法,包括与各种操作系统平台、SSH服务的镜像、Web服务器与应用、数据库的应用、各类编程语言的接口、私有仓库等;第三部分(第18~21章)是一些高级话题,如Docker核心技术、安全、高级网络配置、相关项目等。《Docker技术入门与实战》从基本原理开始入手,深入浅出地讲解Docker的构建与操作,内容系统全面,可帮助开发人员、运维人员快速部署应用。 第2版前言 第1版前言 第一部分 基础入门 第1章 初识容器与Docker 1.1 什么是Docker 1.2 为什么要使用Docker 1.3 Docker与虚拟化 1.4 本章小结 第2章 核心概念与安装配置 2.1 核心概念 2.2 安装Docker 2.3 配置Docker服务 2.4 推荐实践环境 2.5 本章小结 第3章 使用Docker镜像 3.1 获取镜像 3.2 查看镜像信息 3.3 搜寻镜像 3.4 删除镜像 3.5 创建镜像 3.6 存出和载入镜像 3.7 上传镜像 3.8 本章小结 第4章 操作Docker容器 4.1 创建容器 4.2 终止容器 4.3 进入容器 4.4 删除容器 4.5 导入和导出容器 4.6 本章小结 第5章 访问Docker仓库 5.1 Docker Hub公共镜像市场 5.2 时速云镜像市场 5.3 搭建本地私有仓库 5.4 本章小结 第6章 Docker数据管理 6.1 数据卷 6.2 数据卷容器 6.3 利用数据卷容器来迁移数据 6.4 本章小结 第7章 端口映射与容器互联 7.1 端口映射实现访问容器 7.2 互联机制实现便捷互访 7.3 本章小结 第8章 使用Dockerfile创建镜像 8.1 基本结构 8.2 指令说明 8.3 创建镜像 8.4 使用.dockerignore文件 8.5 最佳实践 8.6 本章小结 第二部分 实战案例 第9章 操作系统 9.1 BusyBox 9.2 Alpine 9.3 Debian/Ubuntu 9.4 CentOS/Fedora 9.5 本章小结 第10章 为镜像添加SSH服务 10.1 基于commit命令创建 10.2 使用Dockerfile创建 10.3 本章小结 第11章 Web服务与应用 11.1 Apache 11.2 Nginx 11.3 Tomcat 11.4 Jetty 11.5 LAMP 11.6 CMS 11.7 持续开发与管理 11.8 本章小结 第12章 数据库应用 12.1 MySQL 12.2 MongoDB 12.3 Redis 12.4 Memcached 12.5 CouchDB 12.6 Cassandra 12.7 本章小结 第13章 分布式处理与大数据平台 13.1 RabbitMQ 13.2 Celery 13.3 Hadoop 13.4 Spark 13.5 Storm 13.6 Elasticsearch 13.7 本章小结 第14章 编程开发 14.1 C/C++ 14.2 Java 14.3 Python 14.4 JavaScript 14.5 Go 14.6 PHP 14.7 Ruby 14.8 Perl 14.9 R 14.10 Erlang 14.11 本章小结 第15章 容器与云服务 15.1 公有云容器服务 15.2 容器云服务 15.3 阿里云容器服务 15.4 时速云容器平台 15.5 本章小结 第16章 容器实战思考 16.1 Docker为什么会成功 16.2 研发人员该如何看容器 16.3 容器化开发模式 16.4 容器与生产环境 16.5 本章小结 第三部分 进阶技能 第17章 Docker核心实现技术 17.1 基本架构 17.2 命名空间 17.3 控制组 17.4 联合文件系统 17.5 Linux网络虚拟化 17.6 本章小结 第18章 配置私有仓库 18.1 安装Docker Registry 18.2 配置TLS证书 18.3 管理访问权限 18.4 配置Registry 18.5 批量管理镜像 18.6 使用通知系统 18.7 本章小结 第19章 安全防护与配置 19.1 命名空间隔离的安全 19.2 控制组资源控制的安全 19.3 内核能力机制 19.4 Docker服务端的防护 19.5 更多安全特性的使用 19.6 使用第三方检测工具 19.7 本章小结 第20章 高级网络功能 20.1 网络启动与配置参数 20.2 配置容器DNS和主机名 20.3 容器访问控制 20.4 映射容器端口到宿主主机的实现 20.5 配置docker0网桥 20.6 自定义网桥 20.7 使用OpenvSwitch网桥 20.8 创建一个点到点连接 20.9 本章小结 第21章 libnetwork插件化网络功能 21.1 容器网络模型 21.2 Docker网络相关命令 21.3 构建跨主机容器网络 21.4 本章小结 第四部分 开源项目 第22章 Etcd——高可用的键值数据库 22.1 简介 22.2 安装和使用Etcd 22.3 使用etcdctl客户端 22.4 Etcd集群管理 22.5 本章小结 第23章 Docker三剑客之Docker Machine 23.1 简介 23.2 安装Machine 23.3 使用Machine 23.4 Machine命令 23.5 本章小结 第24章 Docker三剑客之Docker Compose 24.1 简介 24.2 安装与卸载 24.3 Compose命令说明 24.4 Compose环境变量 24.5 Compose模板文件 24.6 Compose应用案例一:Web负载均衡 24.7 Compose应用案例二:大数据Spark集群 24.8 本章小结 第25章 Docker三剑客之Docker Swarm 25.1 简介 25.2 安装Swarm 25.3 使用Swarm 25.4 使用其他服务发现后端 25.5 Swarm中的调度器 25.6 Swarm中的过滤器 25.7 本章小结 第26章 Mesos——优秀的集群资源调度平台 26.1 简介 26.2 Mesos安装与使用 26.3 原理与架构 26.4 Mesos配置项解析 26.5 日志与监控 26.6 常见应用框架 26.7 本章小结 第27章 Kubernetes——生产级容器集群平台 27.1 简介 27.2 核心概念 27.3 快速体验 27.4 安装部署 27.5 重要组件 27.6 使用kubectl 27.7 网络设计 27.8 本章小结 第28章 其他相关项目 28.1 平台即服务方案 28.2 持续集成平台Drone 28.3 容器管理 28.4 编程开发 28.5 网络支持 28.6 日志处理 28.7 服务代理工具 28.8 标准与规范 28.9 其他项目 28.10 本章小结 附录 附录A 常见问题总结 附录B Docker命令查询 附录C 参考资源链接

2018-12-16

第一本Docker书(完整版)

第一本Docker书(完整版) Docker是一个开源的应用容器引擎,开发者可以利用Docker打包自己的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。本书由Docker公司前服务与支持副总裁James Turnbull编写,是Docker开发指南。 目录章节 第1 章 简介 1.1 Docker 简介 1.1.1 提供一个简单、轻量的建模方式 1.1.2 职责的逻辑分离 1.1.3 快速、高效的开发生命周期 1.1.4 鼓励使用面向服务的架构 1.2 Docker 组件 1.2.1 Docker 客户端和服务器 1.2.2 Docker 镜像 1.2.3 Registry 1.2.4 容器 1.3 我们能用Docker 做什么 1.4 Docker 与配置管理 1.5 Docker 的技术组件 1.6 本书的内容 1.7 Docker 资源 第2 章 安装Docker 2.1 安装Docker 的先决条件 2.2 在Ubuntu 中安装Docker 2.2.1 检查前提条件 2.2.2 安装Docker 2.2.3 Docker 与UFW 2.3 在Red Hat 和Red Hat 系发行版中安装Docker 2.3.1 检查前提条件 2.3.2 安装Docker 2.3.3 在Red Hat 系发行版中启动Docker 守护进程 2.4 在OS X 中安装Boot2Docker 2.4.1 在OS X 中安装Boot2Docker 2.4.2 在OS X 中启动Boot2Docker 2.4.3 测试Boot2Docker 2.5 在Windows 中安装Boot2Docker 2.5.1 在Windows 中安装Boot2Docker 2.5.2 在Windows 中启动Boot2Docker 2.5.3 测试Boot2Docker 2.6 使用本书的Boot2Docker 示例 2.7 Docker 安装脚本 2.8 二进制安装 2.9 Docker 守护进程 2.9.1 配置Docker 守护进程 2.9.2 检查Docker 守护进程是否正在运行 2.10 升级Docker 2.11 Docker 图形用户界面 2.12 小结 第3 章 Docker 入门 3.1 确保Docker 已经就绪 3.2 运行我们的第一个容器 3.3 使用第一个容器 3.4 容器命名 3.5 重新启动已经停止的容器 3.6 附着到容器上 3.7 创建守护式容器 3.8 容器内部都在干些什么 3.9 查看容器内的进程 3.10 在容器内部运行进程 3.11 停止守护式容器 3.12 自动重启容器 3.13 深入容器 3.14 删除容器 3.15 小结 第4 章 使用Docker 镜像和仓库 4.1 什么是Docker 镜像 4.2 列出镜像 4.3 拉取镜像 4.4 查找镜像 4.5 构建镜像 4.5.1 创建Docker Hub 账号 4.5.2 用Docker 的commit 命令创建镜像 4.5.3 用Dockerfile构建镜像 4.5.4 基于Dockerfile构建新镜像 4.5.5 指令失败时会怎样 4.5.6 Dockerfile 和构建缓存 4.5.7 基于构建缓存的Dockerfile模板 4.5.8 查看新镜像 4.5.9 从新镜像启动容器 4.5.10 Dockerfile 指令 4.6 将镜像推送到Docker Hub 4.7 删除镜像 4.8 运行自己的Docker Registry 4.8.1 从容器运行Registry 4.8.2 测试新Registry 4.9 其他可选Registry 服务 4.10 小结 第5 章 在测试中使用Docker 5.1 使用Docker 测试静态网站 5.1.1 Sample 网站的初始Dockerfile 5.1.2 构建Sample 网站和Nginx镜像 5.1.3 从Sample 网站和Nginx 镜像构建容器 5.1.4 修改网站 5.2 使用Docker 构建并测试Web应用程序 5.2.1 构建Sinatra 应用程序 5.2.2 创建Sinatra 容器 5.2.3 构建Redis 镜像和容器 5.2.4 连接到Redis 容器 5.2.5 连接Redis 5.2.6 让Docker 容器互连 5.2.7 使用容器连接来通信 5.3 Docker 用于持续集成 5.3.1 构建Jenkins 和Docker服务器 5.3.2 创建新的Jenkins 作业 5.3.3 运行Jenkins 作业 5.3.4 与Jenkins 作业有关的下一步 5.3.5 Jenkins 设置小结 5.4 多配置的Jenkins 5.4.1 创建多配置作业 5.4.2 测试多配置作业 5.4.3 Jenkins 多配置作业小结 5.5 其他选择 5.5.1 Drone 5.5.2 Shippable 5.6 小结 第6 章 使用Docker 构建服务 6.1 构建第一个应用 6.1.1 Jekyll 基础镜像 6.1.2 构建Jekyll 基础镜像 6.1.3 Apache 镜像 6.1.4 构建Jekylll Apache 镜像 6.1.5 启动Jekylll 网站 6.1.6 更新Jekyll 网站 6.1.7 备份Jekyll 卷 6.1.8 扩展Jekyll 示例网站 6.2 使用Docker 构建一个Java应用服务 6.2.1 WAR 文件的获取器 6.2.2 获取WAR 文件 6.2.3 Tomecat7 应用服务器 6.2.4 运行WAR 文件 6.2.5 基于Tomcat 应用服务器的构建服务 6.3 多容器的应用栈 6.3.1 Node.js 镜像 6.3.2 Redis 基础镜像 6.3.3 Redis 主镜像 6.3.4 Redis 从镜像 6.3.5 创建Redis 后端集群 6.3.6 创建Node 容器 6.3.7 捕获应用日志 6.3.8 Node 程序栈的小结 6.4 不使用SSH 管理Docker 容器 6.5 小结 第7 章 使用Fig 编配Docker 7.1 Fig 7.1.1 安装Fig 7.1.2 获取示例应用 7.1.3 fig.yml 文件 7.1.4 运行Fig 7.1.5 使用Fig 7.1.6 Fig 小结 7.2 Consul、服务发现和Docker 7.2.1 构建Consul 镜像 7.2.2 在本地测试Consul 容器 7.2.3 使用Docker 运行Consul集群 7.2.4 启动具有自启动功能的Consul 节点 7.2.5 启动其余节点 7.2.6 配合Consul,在Docker里运行一个分布式服务 7.3 其他编配工具和组件 7.3.1 Fleet 和etcd 7.3.2 Kubernetes 7.3.3 Apache Mesos 7.3.4 Helios 7.3.5 Centurion 7.3.6 Libswarm 7.4 小结 第8 章 使用Docker API 8.1 Docker API 8.2 初识Remote API 8.3 测试Docker Remote API 8.3.1 通过API 来管理Docker镜像 8.3.2 通过API 管理Docker容器 8.4 改进TProv 应用 8.5 对Docker Remote API 进行认证 8.5.1 建立证书授权中心 8.5.2 创建服务器的证书签名请求和密钥 8.5.3 配置Docker 守护进程 8.5.4 创建客户端证书和秘钥 8.5.5 配置Docker 客户端开启认证功能 8.6 小结 第9 章 获得帮助和对Docker进行改进 9.1 获得帮助 9.1.1 Docker 用户和开发邮件列表 9.1.2 IRC 上的Docker 9.1.3 GitHub 上的Docker 9.2 报告Docker 的问题 9.3 搭建构建环境 9.3.1 安装Docker 9.3.2 安装源代码和构建工具 9.3.3 检出源代码 9.3.4 贡献文档 9.3.5 构建开发环境 9.3.6 运行测试 9.3.7 在开发环境中使用Docker 9.3.8 发起pull request 9.3.9 批准合并和维护者 9.4 小结

2018-12-16

PyTorch深度学习实战

PyTorch深度学习实战 PyTorch是什么? 这是一个基于Python的科学计算包,其旨在服务两类场合: 替代numpy发挥GPU潜能 一个提供了高度灵活性和效率的深度学习实验性平台

2018-12-07

Deep Learning with PyTorch

PyTorch即 Torch 的 Python 版本。Torch 是由 Facebook 发布的深度学习框架,因支持动态定义计算图,相比于 Tensorflow 使用起来更为灵活方便,特别适合中小型机器学习项目和深度学习初学者。但因为 Torch 的开发语言是Lua,导致它在国内一直很小众。所以,在千呼万唤下,PyTorch应运而生!PyTorch 继承了 Troch 的灵活特性,又使用广为流行的 Python 作为开发语言,所以一经推出就广受欢迎!

2018-12-07

Python高效开发实战——Django、Tornado、Flask、Twisted

Python高效开发实战——Django、Tornado、Flask、Twisted一书分为三部分:第1部分是基础篇,带领初学者实践Python开发环境和掌握基本语法,同时对网络协议、Web客户端技术、数据库建模编程等网络编程基础深入浅出地进行学习;第2部分是框架篇,学习当前最流行的PythonWeb框架,即Django、Tornado、Flask和Twisted,达到对各种Python网络技术融会贯通的目的;第3部分是实战篇,分别对4种框架进行项目实践,利用其各自的特点开发适用于不同场景的网络程序。

2018-11-27

关联挖掘算法详解

关联挖掘算法主要包括Apriori和FP-Growth,两者对于不同的场景有着显著地差异性...

2018-11-20

WEKA完整中文教程

WEKA中文指南是weka很好的学习资料,包含两份完整的中文说明文档,能够帮助我们快速上手weka。

2018-11-19

python2和python3版本可用的OpenCV安装包

python2和python3版本可用的OpenCV安装包里面包含了python2的安装包和python3的安装包,经过测试成功安装,十分方便。

2018-11-16

Python计算机视觉编程(含源码)

Python计算机视觉编程(含源码)依赖Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、三维重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。另外,书中附带的练习还能让读者巩固并学会应用编程知识。

2018-11-16

linecache安装包(python2和python3兼容)

linecache模块可以读取文件并将文件内容缓存起来,方便后面多次读取。这个模块原本被设计用来读取Python模块的源代码,所以当一个文件名不在指定路径下的时候,模块会通过搜索路径(search path)来尝试读取文件

2018-11-15

百度脑图桌面版

百度脑图是一款很好的思维发散工具,能够快速帮助使用者来构建思维导图,百度脑图桌面版与web版本有相同的功能,只不过可以当做软件离线使用,非常方便

2018-11-09

PMF正交矩阵因子分解

PMF正交矩阵因子分解 主要讲解EPA PMF软件的使用,是很好的中文使用文档说明,值得学习参考,对于大气环境数据的分析很有帮助。

2018-11-09

Together_CZ的留言板

发表于 2020-01-02 最后回复 2020-02-17

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除