基于堆叠式长短期记忆神经网络模型StackingLSTM的时间序列数据预测模型构建

     在实际生活中,时序序列数据是很常见的一类数据,回归模型、神经网络模型都可以用于构建时间序列数据的预测模型,基于机器学习回归模型的时序数据预测模型构建在我之前的文章中已经提及了这里就不再进行说明了,基于深度神经网络模型DNN的时序数据预测模型相对于LSTM网络结构而言更为简单,今天不做说明,本文主要是结合LSTM网络模型来构建时序数据的预测模型,实践一下时间序列预测。

     这里首先贴出来所使用到的数据:

1455.219971
1399.420044
1402.109985
1403.449951
1441.469971
1457.599976
1438.560059
1432.25
1449.680054
1465.150024
1455.140015
1455.900024
1445.569946
1441.359985
1401.530029
1410.030029
1404.089966
1398.560059
1360.160034
1394.459961
1409.280029
1409.119995
1424.969971
1424.369995
1424.23999
1441.719971
1411.709961
1416.829956
1387.119995
1389.939941
1402.050049
1387.670044
1388.26001
1346.089966
1352.170044
1360.689941
1353.430054
1333.359985
1348.050049
1366.420044
1379.189941
1381.76001
1409.170044
1391.280029
1355.619995
1366.699951
1401.689941
1395.069946
1383.619995
1359.150024
1392.140015
1458.469971
1464.469971
1456.630005
1493.869995
1500.640015
1527.349976
1527.459961
1523.
©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值