异常值检测算法 IsolationForest、EllipticEnvelope、OneClassSVM实践

CNN、LSTM建模实战专栏 同时被 2 个专栏收录
24 篇文章 467 订阅 ¥29.90 ¥99.00
31 篇文章 462 订阅 ¥29.90 ¥99.00

      异常点或者是异常值检测算法是机器学习领域中很重要的一个分支,有效地挖掘出来数据中的异常值对于建模分析等工作来说是很重要的,异常点的检测算法也有很多,主要分为以下几种:

异常检测的方法:

(1)基于模型的技术:首先建立一个数据模型,异常是那些同模型不能完美拟合的对象;如果模型是簇的集合,则异常是不显著属于任何簇的对象;在使用回归模型时,异常是相对远离预测值的对象。

(2)基于邻近度的技术:通常可以在对象之间定义邻近性度量,异常对象是那些远离其他对象的对象。

(3)基于密度的技术:仅当一个点的局部密度显著低于它的大部分近邻时才将其分类为离群点。

       关于原理的东西总是觉得写起来比较繁琐一点,这里从网上找到了一篇相关的总结性的文章,个人觉得挺不错的,这里给出来具体的链接,文章是:《异常检测的方法整理》,如果需要的话可以看看。

      这里主要是实际一个任务中使用到了异常值检测相关的内容,借着正好做完有点时间就想着把这些实践整理出来,也希望能帮到需要的人,同时对于自己来说也是一次温习记录。

      由于项目的缘故,这里就不使用真实的数据来做了,直接基于sklearn提供的dataset模块进行数据集的生成,具体的代码实现如下所示:

def makeData(ns=1000,nf=2,ratio=
  • 1
    点赞
  • 2
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值